Chứng minh rằng
a) Nếu \[x\] là số tự nhiên không chia hết cho \[3\] thì \(M = 2{x^2} - 5\) chia hết cho \[3\].
b) Nếu \(x\) là số tự nhiên lẻ thì \(N = {x^3} + 3{x^2} - x - 3\) chia hết cho \[8\].
c) Đa thức \[M = x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) + 1\] (với \(x \in \mathbb{Z}\)) là bình phương của một số nguyên.
Chứng minh rằng
a) Nếu \[x\] là số tự nhiên không chia hết cho \[3\] thì \(M = 2{x^2} - 5\) chia hết cho \[3\].
b) Nếu \(x\) là số tự nhiên lẻ thì \(N = {x^3} + 3{x^2} - x - 3\) chia hết cho \[8\].
c) Đa thức \[M = x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) + 1\] (với \(x \in \mathbb{Z}\)) là bình phương của một số nguyên.
Quảng cáo
Trả lời:

Hướng dẫn giải
a) Vì \[x\] là số tự nhiên không chia hết cho \[3\] nên ta có \(x = 3k + 1\) hoặc \(x = 3k + 2\,\,\left( {k \in \mathbb{N}} \right)\).
⦁ Với \(x = 3k + 1\) ta có: \[M = 2{\left( {3k + 1} \right)^2} - 5\]\[ = 2\left( {9{k^2} + 6k + 1} \right) - 5\]
\[ = 18{k^2} + 12k + 2 - 5\]\[ = 18{k^2} + 12k - 3 = 3\left( {6{k^2} + 4k - 1} \right)\,\, \vdots \,\,3\].
⦁ Với \(x = 3k + 2\) ta có: \[M = 2{\left( {3k + 2} \right)^2} - 5\]\[ = 2\left( {9{k^2} + 12k + 4} \right) - 5\]
\[ = 18{k^2} + 24k + 8 - 5\]\[ = 18{k^2} + 24k + 3\]\[ = 3\left( {6{k^2} + 8k + 1} \right)\,\, \vdots \,\,3\].
Vậy \[x\] là số tự nhiên không chia hết cho \[3\] thì \(M = 2{x^2} - 5\) chia hết cho \[3\].
b) Vì \(x\) là số tự nhiên lẻ nên ta có \(x = 2k + 1\,\,\left( {k \in \mathbb{N}} \right)\). Do đó:
\(N = {\left( {2k + 1} \right)^3} + 3{\left( {2k + 1} \right)^2} - \left( {2k + 1} \right) - 3\)
\( = 8{k^3} + 12{k^2} + 6k + 1 + 12{k^2} + 12k + 3 - 2k - 1 - 3\)
\( = 8{k^3} + 24{k^2} + 16k\)
\( = 8\left( {{k^3} + 3{k^2} + 2k} \right)\,\, \vdots \,\,8\)
Vậy \(x\) là số tự nhiên lẻ thì \(N = {x^3} + 3{x^2} - x - 3\) chia hết cho \[8\].
c) Ta có \[M = x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) + 1\]\( = x\left( {x + 3} \right)\left( {x + 2} \right)\left( {x + 1} \right) + 1\)
\( = \left( {{x^2} + 3x} \right)\left( {{x^2} + 3x + 2} \right) + 1\)\( = {\left( {{x^2} + 3x} \right)^2} + 2\left( {{x^2} + 3x} \right) + 1\)\( = {\left( {{x^2} + 3x + 1} \right)^2}\).
Với \(x \in \mathbb{Z}\) ta có \(\left( {{x^2} + 3x + 1} \right) \in \mathbb{Z}\). Do đó \({\left( {{x^2} + 3x + 1} \right)^2}\) là bình phương của một số nguyên.
Vậy đa thức \[M = x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) + 1\] (với \(x \in \mathbb{Z}\)) là bình phương của một số nguyên.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
d) \[D = \left( {y - 2} \right)\left( {y - 5} \right)\left( {y - 6} \right)\left( {9 - y} \right)\]
\[ = \left[ {\left( {y - 2} \right)\left( {9 - y} \right)} \right]\left[ {\left( {y - 5} \right)\left( {y - 6} \right)} \right]\]
\[ = \left( { - {y^2} + 11y - 18} \right)\left( {{y^2} - 11y + 30} \right)\]
Đặt \[t = {y^2} - 11y\], ta có
\[D = \left( { - t - 18} \right)\left( {t + 30} \right)\]\[ = - {t^2} - 48t - 540\]
\[ = - \left( {{t^2} + 48t + 576} \right) + 36\]\[ = - {\left( {t + 24} \right)^2} + 36.\]
Với mọi \(t,\) ta có \[{\left( {t + 24} \right)^2} \ge 0\] nên \[ - {\left( {t + 24} \right)^2} \le 0\] suy ra \[ - {\left( {t + 24} \right)^2} + 36 \le 36\].
Do đó \[D \le 36\].
Dấu xảy ra khi \(t = - 24\) hay \[{y^2} - 11y = - 24\]
\[{y^2} - 11y + 24 = 0\]
\[\left( {y - 3} \right)\left( {y - 8} \right) = 0\]
\[y = 3\] hoặc \[y = 8\]
Vậy giá trị lớn nhất của biểu thức \(D\) là \(36\) khi \(y = 3\); \(y = 8\).
Lời giải
Hướng dẫn giải
a) Ta hoàn thành được biểu đồ cột kép biểu diễn dữ liệu trong biểu đồ đoạn thẳng như sau:
b) Trong năm 2020 lượng gia cầm ở Kon Tum nhiều nhất, là 1698 nghìn con.
c) Tổng số lượng gia cầm ở Kon Tum trong năm \[2015,\]\[2018,{\rm{ }}2019,{\rm{ }}2020\] là:
\(853 + 1\,\,431 + 1\,\,608 + 1\,\,698 = 5\,\,590\) (nghìn con).
Trong năm 2018, số lượng gia cầm ở TP. HCM \[(375\] nghìn con) ít hơn so với số lượng gia cầm ở Kon Tum \[(1{\rm{ }}431\] nghìn con) nên nhận định trên bài báo không chính xác.
d) Một vài giải pháp để tăng số lượng gia cầm ở Kon Tum trong những năm tới để đạt hiệu quả trong chăn nuôi:
⦁ Đẩy mạnh tuyên truyền, vận động nhân dân chăm sóc tốt đàn gia cầm hiện có;
⦁ Mạnh dạn đầu tư phát triển quy mô chăn nuôi, đa dạng các loại gia cầm;
⦁ Chú trọng việc lai tạo và cải thiện giống gia cầm địa phương;
⦁ Thường xuyên thực hiện vệ sinh tiêu độc khử trùng; …
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.