Câu hỏi:

20/09/2025 36 Lưu

Một tấm bìa cứng hình chữ nhật có chiều dài là \({\rm{50 cm}}\) và chiều rộng là \({\rm{30 cm}}\). Bạn Linh cắt ở mỗi góc một tấm bìa hình vuông cạnh \(x{\rm{\;(cm)}}\) và xếp phần còn lại thành một hình hộp không nắp. Tìm \(x\) để diện tích xung quanh của hình hộp chữ nhật sau khi cắt là lớn nhất.

Tìm x để diện tích xung quanh của hình hộp chữ nhật sau khi cắt là lớn nhất. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Diện tích tấm bìa hình chữ nhật này là: \[50 \cdot 30 = 1\,\,500{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\]

Chiều dài sau khi cắt tấm bìa là: \(50 - 2x{\rm{\;(cm)}}{\rm{.}}\)

Chiều rộng sau khi cắt tấm bìa là: \(30 - 2x{\rm{\;(cm)}}{\rm{.}}\)

Diện tích xung quanh của hộp là: \(2x\left( {50 - 2x + 30 - 2x} \right) = 2x\left( {80 - 4x} \right) = - 8{x^2} + 160x{\rm{\;(c}}{{\rm{m}}^2}{\rm{)}}{\rm{.}}\)

Để diện tích xung quanh của hình hộp chữ nhật sau khi cắt là lớn nhất thì \( - 8{x^2} + 160x\) đạt giá trị lớn nhất.

Ta có: \( - 8{x^2} + 160x = - 8\left( {{x^2} - 20x + 100} \right) + 800 = - 8{\left( {x - 10} \right)^2} + 800\)

Với mọi \(x > 0,\) ta có: \( - 8{\left( {x - 10} \right)^2} \le 0\) nên \( - 8{\left( {x - 10} \right)^2} + 800 \le 800\).

Dấu “=” xảy ra khi \(x - 10 = 0\) hay \(x = 10\).

Vậy diện tích xung quanh hình hộp chữ nhật là \(800{\rm{ c}}{{\rm{m}}^2}\) khi \(x = 10{\rm{ cm}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

d) \[D = \left( {y - 2} \right)\left( {y - 5} \right)\left( {y - 6} \right)\left( {9 - y} \right)\]

\[ = \left[ {\left( {y - 2} \right)\left( {9 - y} \right)} \right]\left[ {\left( {y - 5} \right)\left( {y - 6} \right)} \right]\]

\[ = \left( { - {y^2} + 11y - 18} \right)\left( {{y^2} - 11y + 30} \right)\]

Đặt \[t = {y^2} - 11y\], ta có

\[D = \left( { - t - 18} \right)\left( {t + 30} \right)\]\[ = - {t^2} - 48t - 540\]

   \[ = - \left( {{t^2} + 48t + 576} \right) + 36\]\[ = - {\left( {t + 24} \right)^2} + 36.\]

Với mọi \(t,\) ta có \[{\left( {t + 24} \right)^2} \ge 0\] nên \[ - {\left( {t + 24} \right)^2} \le 0\] suy ra \[ - {\left( {t + 24} \right)^2} + 36 \le 36\].

Do đó \[D \le 36\].

Dấu xảy ra khi \(t = - 24\) hay \[{y^2} - 11y = - 24\]

\[{y^2} - 11y + 24 = 0\]

\[\left( {y - 3} \right)\left( {y - 8} \right) = 0\]

\[y = 3\] hoặc \[y = 8\]

Vậy giá trị lớn nhất của biểu thức \(D\)\(36\) khi \(y = 3\); \(y = 8\).

Lời giải

Hướng dẫn giải

a) Ta hoàn thành được biểu đồ cột kép biểu diễn dữ liệu trong biểu đồ đoạn thẳng như sau:

Hãy hoàn thành biểu đồ cột kép ở hình bên dưới để nhận được biểu đồ biểu diễn dữ liệu trong biểu đồ đoạn thẳng ở hình trên. (ảnh 3)

b) Trong năm 2020 lượng gia cầm ở Kon Tum nhiều nhất, là 1698 nghìn con.

c) Tổng số lượng gia cầm ở Kon Tum trong năm \[2015,\]\[2018,{\rm{ }}2019,{\rm{ }}2020\] là:

\(853 + 1\,\,431 + 1\,\,608 + 1\,\,698 = 5\,\,590\) (nghìn con).

Trong năm 2018, số lượng gia cầm ở TP. HCM \[(375\] nghìn con) ít hơn so với số lượng gia cầm ở Kon Tum \[(1{\rm{ }}431\] nghìn con) nên nhận định trên bài báo không chính xác.

d) Một vài giải pháp để tăng số lượng gia cầm ở Kon Tum trong những năm tới để đạt hiệu quả trong chăn nuôi:

Đẩy mạnh tuyên truyền, vận động nhân dân chăm sóc tốt đàn gia cầm hiện có;

Mạnh dạn đầu tư phát triển quy mô chăn nuôi, đa dạng các loại gia cầm;

Chú trọng việc lai tạo và cải thiện giống gia cầm địa phương;

Thường xuyên thực hiện vệ sinh tiêu độc khử trùng; …

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP