Câu hỏi:

22/09/2025 11 Lưu

Cho hai đường thẳng \(a\)\(b\) song song với nhau. Trên đường thẳng \(a\) lấy hai điểm \(A\)\(E\) (điểm \(A\) không trùng với điểm \(E\)). Kẻ \(AB\) vuông góc với đường thẳng \(b\) tại \(B\). Lấy điểm \(D\) thuộc đường thẳng \(b\) sao cho \(\widehat {AED} = 65^\circ .\)

a) Vẽ hình và viết giả thiết, kết luận của bài toán.

b) Tính số đo của \(\widehat {BAE}\)\(\widehat {BDE}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a)

GT

\(a\parallel b\); \(A \in a;\,\,E \in a\,\,\left( {A \ne E} \right)\);

\(AB \bot b\) tại \(B\); \[\widehat {AED} = 65^\circ \,\,\left( {D \in b} \right).\]

KL

\(\widehat {BAE} = ?\)\(\widehat {BDE} = ?\)

 

Vẽ hình và viết giả thiết, kết luận của bài toán. (ảnh 1)

b) Theo giả thiết \(a\parallel b\); \(AB \bot b\) tại \(B\) nên \(AB \bot a\) tại \(A\) hay \(\widehat {BAE} = 90^\circ \).

\(a\parallel b\) nên \[\widehat {AED} = {\widehat D_1} = 65^\circ \] (hai góc so le trong).

\(\widehat {BDE}\)\[{\widehat D_1}\] là hai góc kề bù nên \(\widehat {BDE} + {\widehat D_1} = 180^\circ \).

Suy ra \[\widehat {BDE} + {\widehat D_1} = 180^\circ - 65^\circ = 115^\circ \].

Vậy \(\widehat {BAE} = 90^\circ \)\(\widehat {BDE} = 115^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có: \({\left( {{x^2} - 9} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R}\)

\(\left| {y - 2} \right| \ge 0\) với mọi \(y \in \mathbb{R}\)

Khi đó \({\left( {{x^2} - 9} \right)^2} + \left| {y - 2} \right| \ge 0\) nên \({\left( {{x^2} - 9} \right)^2} + \left| {y - 2} \right| + 10 \ge 0 + 10.\)

Do đó \({\left( {{x^2} - 9} \right)^2} + \left| {y - 2} \right| + 10 \ge 10\).

Dấu xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{x^2} - 9 = 0\\\left| {y - 2} \right| = 0\end{array} \right.\)  nên \(\left\{ \begin{array}{l}x = \pm 3\\y = 2\end{array} \right.\).

Vậy giá trị nhỏ nhất của biểu thức \(A\) bằng \(10\) khi \(\left( {x;y} \right) = \left( { - 3;2} \right)\) hay \(\left( {x\,;y} \right) = \left( {3\,;2} \right)\).

Lời giải

c) Ta có \({x^2} \ge 0\) với mọi \(x \in \mathbb{R}\)

\({x^2} + 5 \ge 5\) với mọi \(x \in \mathbb{R}\)

\(\left| {{x^2} + 5} \right| \ge 5\) với mọi \(x \in \mathbb{R}\)

\( - \left| {{x^2} + 5} \right| \le - 5\) với mọi \(x \in \mathbb{R}\)

\(6 - \left| {{x^2} + 5} \right| \le 1\) với mọi \(x \in \mathbb{R}\)

Dấu xảy ra khi và chỉ khi \({x^2} = 0\) hay \(x = 0\).

Vậy giá trị lớn nhất của biểu thức đã cho là 1 khi \(x = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP