Cho hai đường thẳng \(a\) và \(b\) song song với nhau. Trên đường thẳng \(a\) lấy hai điểm \(A\) và \(E\) (điểm \(A\) không trùng với điểm \(E\)). Kẻ \(AB\) vuông góc với đường thẳng \(b\) tại \(B\). Lấy điểm \(D\) thuộc đường thẳng \(b\) sao cho \(\widehat {AED} = 65^\circ .\)
a) Vẽ hình và viết giả thiết, kết luận của bài toán.
b) Tính số đo của \(\widehat {BAE}\) và \(\widehat {BDE}\).
Cho hai đường thẳng \(a\) và \(b\) song song với nhau. Trên đường thẳng \(a\) lấy hai điểm \(A\) và \(E\) (điểm \(A\) không trùng với điểm \(E\)). Kẻ \(AB\) vuông góc với đường thẳng \(b\) tại \(B\). Lấy điểm \(D\) thuộc đường thẳng \(b\) sao cho \(\widehat {AED} = 65^\circ .\)
a) Vẽ hình và viết giả thiết, kết luận của bài toán.
b) Tính số đo của \(\widehat {BAE}\) và \(\widehat {BDE}\).
Quảng cáo
Trả lời:

Hướng dẫn giải
a)
|
|
b) Theo giả thiết \(a\parallel b\); \(AB \bot b\) tại \(B\) nên \(AB \bot a\) tại \(A\) hay \(\widehat {BAE} = 90^\circ \).
Vì \(a\parallel b\) nên \[\widehat {AED} = {\widehat D_1} = 65^\circ \] (hai góc so le trong).
Vì \(\widehat {BDE}\) và \[{\widehat D_1}\] là hai góc kề bù nên \(\widehat {BDE} + {\widehat D_1} = 180^\circ \).
Suy ra \[\widehat {BDE} + {\widehat D_1} = 180^\circ - 65^\circ = 115^\circ \].
Vậy \(\widehat {BAE} = 90^\circ \) và \(\widehat {BDE} = 115^\circ \).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có: \({\left( {{x^2} - 9} \right)^2} \ge 0\) với mọi \(x \in \mathbb{R}\)
\(\left| {y - 2} \right| \ge 0\) với mọi \(y \in \mathbb{R}\)
Khi đó \({\left( {{x^2} - 9} \right)^2} + \left| {y - 2} \right| \ge 0\) nên \({\left( {{x^2} - 9} \right)^2} + \left| {y - 2} \right| + 10 \ge 0 + 10.\)
Do đó \({\left( {{x^2} - 9} \right)^2} + \left| {y - 2} \right| + 10 \ge 10\).
Dấu xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}{x^2} - 9 = 0\\\left| {y - 2} \right| = 0\end{array} \right.\) nên \(\left\{ \begin{array}{l}x = \pm 3\\y = 2\end{array} \right.\).
Vậy giá trị nhỏ nhất của biểu thức \(A\) bằng \(10\) khi \(\left( {x;y} \right) = \left( { - 3;2} \right)\) hay \(\left( {x\,;y} \right) = \left( {3\,;2} \right)\).
Lời giải
c) Ta có \({x^2} \ge 0\) với mọi \(x \in \mathbb{R}\)
\({x^2} + 5 \ge 5\) với mọi \(x \in \mathbb{R}\)
\(\left| {{x^2} + 5} \right| \ge 5\) với mọi \(x \in \mathbb{R}\)
\( - \left| {{x^2} + 5} \right| \le - 5\) với mọi \(x \in \mathbb{R}\)
\(6 - \left| {{x^2} + 5} \right| \le 1\) với mọi \(x \in \mathbb{R}\)
Dấu xảy ra khi và chỉ khi \({x^2} = 0\) hay \(x = 0\).
Vậy giá trị lớn nhất của biểu thức đã cho là 1 khi \(x = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.