Cho hình vẽ bên. Biết \(\widehat {xOz} = 97^\circ ,\,\,\widehat {tOu} = 82^\circ \) và tia \(Oz\) là tia phân giác của góc \(\widehat {tOu}\).

a) Vẽ lại hình và kể tên các cặp góc kề bù (không tính góc bẹt) có trong hình vẽ.
b) Tính số đo của góc \(\widehat {tOz},\,\,\widehat {tOy}\).
Cho hình vẽ bên. Biết \(\widehat {xOz} = 97^\circ ,\,\,\widehat {tOu} = 82^\circ \) và tia \(Oz\) là tia phân giác của góc \(\widehat {tOu}\).

a) Vẽ lại hình và kể tên các cặp góc kề bù (không tính góc bẹt) có trong hình vẽ.
b) Tính số đo của góc \(\widehat {tOz},\,\,\widehat {tOy}\).Quảng cáo
Trả lời:
Hướng dẫn giải
|
a) Học sinh vẽ hình đúng số đo góc. Các cặp góc kề bù có trong hình vẽ là: \(\widehat {xOt}\) và \(\widehat {tOy}\); \(\widehat {xOz}\) và \(\widehat {zOy}\); \(\widehat {xOu}\) và \(\widehat {uOy}\). b) Tính số đo của góc \(\widehat {tOz},\,\,\widehat {tOy}\). |
![]() |
Ta có tia \(Oz\) là tia phân giác của góc \(tOu\) nên: \(\widehat {tOz} = \frac{1}{2}\widehat {tOu} = 41^\circ \).
Ta có \(\widehat {tOx} + \widehat {tOz} = \widehat {xOz}\)
Nên \(\widehat {tOx} = \widehat {xOz} - \widehat {tOz} = 97^\circ - 41^\circ = 56^\circ \).
Do \(\widehat {tOx} + \widehat {tOy} = 180^\circ \)
Suy ra \(\widehat {tOy} = 180^\circ - \widehat {tOx} = 180^\circ - 56^\circ = 124^\circ \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có \(VT = \left| {2x + 3} \right| + \left| {2x - 1} \right| = \left| {2x + 3} \right| + \left| {1 - 2x} \right| \ge \left| {2x + 3 + 1 - 2x} \right| = 4\).
Ta có \({\left( {x + 1} \right)^2} \ge 0\) suy ra \(3{\left( {x + 1} \right)^2} \ge 0\) nên \(3{\left( {x + 1} \right)^2} + 2 \ge 2\).
Do đó \(VP = \frac{8}{{3{{\left( {x + 1} \right)}^2} + 2}} \le 4\).
Ta thấy \(\left\{ \begin{array}{l}VT \ge 4\\VP \le 4\end{array} \right.\). Mà \(VT = VP\) nên \(VT = VP = 4\).
Khi đó \(\left\{ \begin{array}{l}x + 1 = 0\\\left( {2x + 3} \right)\left( {1 - 2x} \right) > 0\end{array} \right.\) nên \(x = - 1\).
Vậy \(x = - 1\).
Lời giải
Hướng dẫn giải
|
a)
b) Vì \(AB\parallel xy\) nên \(\widehat {BAI} = \widehat {AIx} = 45^\circ \) (hai góc so le trong). |
![]() |
Ta có \(\widehat {AIF} = \widehat {AIx} + \widehat {FIx}\).
Suy ra \(\widehat {FIx} = \widehat {AIF} - \widehat {AIx} = 105^\circ - 45^\circ = 60^\circ \).
Vì \(\widehat {FIx}\) và \(\widehat {FIy}\) là hai góc kề bù nên \(\widehat {FIx} + \widehat {FIy} = 180^\circ \).
Suy ra \(\widehat {FIy} = 180^\circ - \widehat {FIx} = 180^\circ - 60^\circ = 120^\circ \).
Vậy \(\widehat {FIx} = 60^\circ \); \(\widehat {FIy} = 120^\circ \).
c) Ta thấy \(\widehat {FIy} = \widehat {EFI} = 120^\circ \) mà \(\widehat {FIy}\) và \(\widehat {EFI}\) ở vị trí so le trong.
Do đó\[AB\parallel EF\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


