Câu hỏi:

22/09/2025 252 Lưu

Thầy Việt dự định mua \[x\] quyển vở để trao thưởng cho những học sinh tiến bộ cuối năm học, mỗi quyển vở giá \[y\] đồng. Nhưng khi đến cửa hàng thầy Việt thấy giá vở đã giảm 2000 đồng mỗi quyển nên quyết định mua thêm 30 quyển.

a) Tìm đa thức biểu thị số tiền thầy Việt phải trả cho cửa hàng.

b) Hãy cho biết bậc của đa thức vừa tìm được ở câu a và tính số tiền thầy Việt phải trả nếu thầy mua 50 quyển vở và giá 1 quyển vở khi chưa giảm là 7000 đồng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đa thức biểu thị số tiền thầy Việt phải trả cho cửa hàng là:

\[\left( {x + 30} \right)\left( {y - 2\,\,000} \right)\; = xy-2\,\,000x + 30y-60\,\,000\].

b) Bậc của đa thức vừa tìm được ở câu a là bậc 2.

Thay \[x = 20\,;\,{\rm{ }}y = 7\,\,000\] vào biểu thức \[xy-2\,\,000x + 30y-60\,\,000\], ta được:

\[20 \cdot 7\,\,000-2\,\,000 \cdot 20 + 30 \cdot 7\,\,000-60\,\,000\]

\[ = 140\,\,000-40\,\,000 + 210\,\,000-60\,\,000 = 250\,\,000\] (đồng).

Vậy số tiền thầy Việt phải trả là \[250\,\,000\] đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét tứ giác \(AMHN\)

\(\widehat {AMH} = \widehat {MAN} = \widehat {ANH} = {\rm{90^\circ }}\)

Do đó tứ giác \[AMHN\] là hình chữ nhật.

b) Tứ giác \[AMHN\] là hình chữ nhật nên \(AN = MH\)

\(PM = MH\)(do \[M\] là trung điểm của \[PH\,)\] nên\(AN = PM.\)

Ta lại có \(AN\,{\rm{//}}\,PM\)(do \(AN \bot AB\,;PM \bot AB\,).\)

Do đó tứ giác \(APMN\) là hình bình hành.

Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Từ H kẻ HM vuông góc AB, M thuộc AB. Kẻ HN vuông góc AC, N thuộc AC (ảnh 1)

c) \(NC\parallel MK\) nên tứ giác \(MNCK\) là hình thang.

Tứ giác \(AHKC\) có hai đường chéo cắt nhau tại trung điểm \(I\) của mỗi đường nên là hình bình hành nên \(\widehat {HKC} = \widehat {HAC}\).         \(\left( 1 \right)\)

Tứ giác \(AMHN\) là hình chữ nhật.

Khi đó \(OA = ON = OM = OH\) nên \(\Delta OMH\) cân tại \(O\,.\)

Suy ra \(\widehat {OMH} = \widehat {OHM}\)\(\widehat {OAN} = \widehat {OHM}\) ( so le trong)

Do đó \(\widehat {OAN} = \widehat {OMH}\)       \(\left( 2 \right)\)

Từ \(\left( 1 \right),\,\,\left( 2 \right)\) suy ra \(\widehat {OMH} = \widehat {HKC}\).

Hình thang \(MNCK\) có hai góc kề một đáy bằng nhau nên là hình thang cân.

d) Vì \(\Delta AHC\) có hai đường trung tuyến \(AI,\,\,CO\) cắt nhau tại \(D\) nên \(D\) là trọng tâm nên

\(AD = \frac{2}{3}AI\)\(AI = \frac{1}{2}AK\).

Thay vào ta được \(AD = \frac{2}{3} \cdot \frac{1}{2}AK = \frac{1}{3}AK\) nên \(AK = 3AD\).

Lời giải

a) Chu vi mảnh đất làm nhà là: \(2\left( {x - 25 + x - 15} \right) = 2\left( {2x - 40} \right) = 4x - 80\).

Vậy đa thức biểu thị chu vi của mảnh đất làm nhà \(4x - 80\) (m).

b) Vì chu vi của mảnh đất dành để làm nhà bằng \[40\,\,{\rm{m}}\] nên ta có

\(4x - 80 = 40\) hay \(4x = 120\) nên \(x = 30\).

Diện tích của khu vườn hình vuông ban đầu là \[{30^2} = 900{\rm{ }}({{\rm{m}}^{\rm{2}}}).\]

Vậy diện tích của khu vườn hình vuông ban đầu là \[900{\rm{ }}{{\rm{m}}^{\rm{2}}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP