Ao Bà Om, hay Ao Vuông là một thắng cảnh độc đáo và nổi tiếng ở tỉnh Trà Vinh, Việt Nam. Mặt ao nước trong xanh và phẳng lặng được phủ bởi hoa sen, hoa súng. Ao được bao bọc xung quanh bởi các gò cát mấp mô với các hàng cây sao, cây dầu cổ thụ hàng trăm năm tuổi có rễ nổi lên khỏi mặt đất tạo nên những hình thù kì lạ. Ao có hình chữ nhật, rộng \[x\] mét, dài \(\left( {x + 200} \right)\) mét, được đào ở trung tâm miếng đất hình vuông có cạnh là \(\left( {x + 400} \right)\) mét. Hãy tính diện tích phần đất còn lại sau khi đào ao.
Ao Bà Om, hay Ao Vuông là một thắng cảnh độc đáo và nổi tiếng ở tỉnh Trà Vinh, Việt Nam. Mặt ao nước trong xanh và phẳng lặng được phủ bởi hoa sen, hoa súng. Ao được bao bọc xung quanh bởi các gò cát mấp mô với các hàng cây sao, cây dầu cổ thụ hàng trăm năm tuổi có rễ nổi lên khỏi mặt đất tạo nên những hình thù kì lạ. Ao có hình chữ nhật, rộng \[x\] mét, dài \(\left( {x + 200} \right)\) mét, được đào ở trung tâm miếng đất hình vuông có cạnh là \(\left( {x + 400} \right)\) mét. Hãy tính diện tích phần đất còn lại sau khi đào ao.

Quảng cáo
Trả lời:
Diện tích của ao hình chữ nhật là: \({S_1} = x\left( {x + 200} \right) = {x^2} + 200x\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}{\rm{.}}\)
Diện tích miếng đất hình vuông là:
\({S_2} = {\left( {x + 400} \right)^2} = {x^2} + 800x + 160\,\,000\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}{\rm{.}}\)
Diện tích phần đất còn lại sau khi đã đào ao là:
\[S = {S_2} - {S_1}\]\[ = \left( {{x^2} + 800x + 160\,\,000} \right) - \left( {{x^2} + 200x} \right)\]
\[ = {x^2} + 800x + 160\,\,000 - {x^2} - 200x\]
\[ = \left( {{x^2} - {x^2}} \right) + 800x + \left( {160\,\,000 - 200x} \right)\]
\[ = \left( {{x^2} - {x^2}} \right) + \left( {800x - 200x} \right) + 160\,\,000\]
\[ = 600x + 160\,\,000\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}\].
Vậy tính diện tích phần đất còn lại sau khi đào ao là \[600x + 160\,\,000\,\,{\rm{(}}{{\rm{m}}^{\rm{2}}}{\rm{)}}{\rm{.}}\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Xét tứ giác \(AMHN\) có \(\widehat {AMH} = \widehat {MAN} = \widehat {ANH} = {\rm{90^\circ }}\) Do đó tứ giác \[AMHN\] là hình chữ nhật. b) Tứ giác \[AMHN\] là hình chữ nhật nên \(AN = MH\) Mà \(PM = MH\)(do \[M\] là trung điểm của \[PH\,)\] nên\(AN = PM.\) Ta lại có \(AN\,{\rm{//}}\,PM\)(do \(AN \bot AB\,;PM \bot AB\,).\) Do đó tứ giác \(APMN\) là hình bình hành. |
![]() |
c) Vì \(NC\parallel MK\) nên tứ giác \(MNCK\) là hình thang.
Tứ giác \(AHKC\) có hai đường chéo cắt nhau tại trung điểm \(I\) của mỗi đường nên là hình bình hành nên \(\widehat {HKC} = \widehat {HAC}\). \(\left( 1 \right)\)
Tứ giác \(AMHN\) là hình chữ nhật.
Khi đó \(OA = ON = OM = OH\) nên \(\Delta OMH\) cân tại \(O\,.\)
Suy ra \(\widehat {OMH} = \widehat {OHM}\) mà \(\widehat {OAN} = \widehat {OHM}\) ( so le trong)
Do đó \(\widehat {OAN} = \widehat {OMH}\) \(\left( 2 \right)\)
Từ \(\left( 1 \right),\,\,\left( 2 \right)\) suy ra \(\widehat {OMH} = \widehat {HKC}\).
Hình thang \(MNCK\) có hai góc kề một đáy bằng nhau nên là hình thang cân.
d) Vì \(\Delta AHC\) có hai đường trung tuyến \(AI,\,\,CO\) cắt nhau tại \(D\) nên \(D\) là trọng tâm nên
\(AD = \frac{2}{3}AI\) mà \(AI = \frac{1}{2}AK\).
Thay vào ta được \(AD = \frac{2}{3} \cdot \frac{1}{2}AK = \frac{1}{3}AK\) nên \(AK = 3AD\).
Lời giải
|
Hướng dẫn giải a) Do \(ABCD\) là hình bình hành nên \(AB = CD\) và \(AB\,{\rm{//}}\,CD.\) Lại có \[M,{\rm{ }}N\] lần lượt là trung điểm của \[AB\] và \[CD\] nên \(AM = BM = \frac{1}{2}AB\) và \(DN = CN = \frac{1}{2}CD.\) Do đó \(AM = BM = DN = CN\). |
![]() |
Tứ giác \(DMBN\) có \(BM\,{\rm{//}}\,DN\) (do \(AB\,{\rm{//}}\,CD)\) và \(BM = DN\) nên \(DMBN\) là hình bình hành.
b) Xét tứ giác \(AMND\) có \(AM\,{\rm{//}}\,DN\) (do \(AB\,{\rm{//}}\,CD)\) và \(AM = DN\) nên \(AMND\) là hình bình hành.
Lại có \(AB = 2AD\) nên \(AD = \frac{1}{2}AB\), suy ra \(AM = AD\).
Hình bình hành \(AMND\) có \(AM = AD\) nên \(AMND\) là hình thoi
Suy ra đường chéo \(AN\) là đường phân giác của \(\widehat {DAM}\) hay \(\widehat {DAB}.\)
c) Chứng minh tương tự câu a, ta cũng có tứ giác \(AMCN\) là hình bình hành.
Suy ra \(AN\,{\rm{//}}\,CM\) hay \(PN\,{\rm{//}}\,QM\).
Do \(DMBN\) là hình bình hành nên \(DM\,{\rm{//}}\,BN\) hay \(PM\,{\rm{//}}\,QN\).
Tứ giác \[PMQN\] có \(PN\,{\rm{//}}\,QM\)và \(PM\,{\rm{//}}\,QN\) nên \[PMQN\] là hình bình hành.
Lại có \(AMND\) là hình thoi nên \(AN \bot DM\) hay \(\widehat {MPN} = 90^\circ \).
Do đó hình bình hành \[PMQN\] là hình chữ nhật.
Để \[PMQN\] là hình vuông thì \(PM = PN\,\,\,\left( * \right)\)
Mà \(PM = \frac{1}{2}DM\) và \(PN = \frac{1}{2}AN\) (do \(AMND\) là hình thoi nên \(P\) là trung điểm của hai đường chéo).
Do đó để \(\left( * \right)\) xảy ra thì \(DM = AN\) hay hình thoi \(AMND\) là hình vuông, khi đó \(\widehat {DAM} = 90^\circ .\)
Hình bình hành \(ABCD\) có \(\widehat {DAM} = 90^\circ \) thì sẽ trở thành hình chữ nhật.
Vậy để \[PMQN\] là hình vuông thì \(ABCD\) phải là hình chữ nhật.
Thật vậy, khi \(ABCD\) là hình vuông thì hình chữ nhật \[PMQN\] có \(PM = PN\) nên là hình vuông.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


