Câu hỏi:

22/09/2025 23 Lưu

Khẳng định nào sau đây là sai?

A. Tứ giác có hai cặp cạnh đối song song là hình bình hành.

B. Tứ giác có hai cặp cạnh đối bằng nhau là hình bình hành.

C. Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.

D. Hình thang có hai đường chéo bằng nhau là hình bình hành.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Hình thang có hai đường chéo bằng nhau là hình thang cân.

Do đó, khẳng định D là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 24

Vì tam giác vuông \(AHD\)\(\widehat {ADH} = 45^\circ \) nên \(\Delta AHD\) là tam giác vuông cân.

Do đó, \(HD = HA = 4{\rm{ cm}}\).

Ta có \(ABHK\) là hình bình hành \(\left( {AB\parallel HK} \right)\)\(\widehat {AHK} = \widehat {HKB} = 90^\circ \), do đó \(ABHK\) là hình chữ nhật.

Suy ra \(AH = BK = 4{\rm{ cm,}}\) \(AB = HK = 2{\rm{ cm}}{\rm{.}}\)

\(ABCD{\rm{ }}\left( {AB\parallel CD} \right)\) là hình thang cân nên \(\widehat {ADH} = \widehat {BCK} = 45^\circ \).

Do đó, \(\Delta BKC\) cũng là tam giác vuông cân nên \(KB = KC = 4{\rm{ cm}}\).

Ta có: \(DC = DH + HK + KC = 4 + 2 + 4 = 10{\rm{ }}\left( {{\rm{cm}}} \right).\)

Vậy diện tích hình thang cân \(ABCD\) là: \(\frac{{\left( {AB + DC} \right) \cdot AH}}{2} = \frac{{\left( {2 + 10} \right) \cdot 4}}{2} = 24{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

Lời giải

Đáp án: 99

Cho tứ giác ABCD có AB // CD, góc ABC = 135 độ , góc ACB = 24 độ , góc ADC = 60 độ (ảnh 1)

Áp dụng định lí tổng ba góc của một tam giác vào tam giác \(ABC\) ta có;

\(\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \), suy ra \(\widehat {BAC} = 180^\circ - \left( {\widehat {ABC} + \widehat {ACB}} \right) = 21^\circ \).

\(AB\parallel CD\) nên \(\widehat {BAC} = \widehat {ACD} = 21^\circ \) (so le trong).

Xét tam giác \(ACD\) có: \(\widehat {ACD} + \widehat {ADC} + \widehat {CAD} = 180^\circ \) (tổng ba góc trong một tam giác).

Do đó, \(\widehat {CAD} = 180^\circ - \left( {\widehat {ACD} + \widehat {ADC}} \right) = 180^\circ - \left( {60^\circ + 21^\circ } \right) = 99^\circ \).

Vậy \(\widehat {DAC} = 99^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(125^\circ .\)                    

B. \(65^\circ .\)           
C. \(90^\circ .\)          
D. \(55^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP