Câu hỏi:

22/09/2025 102 Lưu

Cho hình bình hành \(ABCD\), đường chéo \(BD.\) Kẻ \(AH\)\(CK\) vuông góc với \(BD\) lần lượt tại \(H\)\(K.\) Gọi \(M\) là giao điểm của \(AK\)\(BC\), gọi \(N\) là giao điểm của \(CH\)\(AD\)\(O\) là trung điểm của \(BD\).

          a) \(\Delta ADH = \Delta CKB\).

          b) \(AK\parallel CH.\)

          c) \(AM = CN.\)

          d) \(M,O,N\) thẳng hàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD lần lượt tại H và K (ảnh 1)

a) Sai.

Xét \(\Delta ADH\)\(\Delta CKB\), có:

\(\widehat {{D_1}} = \widehat {{B_1}}\) (so le trong)

\(AD = BC\) (gt)

Do đó, \(\Delta ADH = \Delta CBK\)(ch – gn).

b) Đúng.

\(\Delta ADH = \Delta CBK\) (cmt) nên \(AH = CK\) (hai góc tương ứng).

Lại có \(AH\parallel CK\) (cùng vuông góc với \(BD\)).

Do đó, \(AKCH\) là hình bình hành.

Suy ra \(AK\parallel CH\).

c) Đúng.

\(M\) là giao điểm của \(AK\)\(BC\), \(N\) là giao điểm của \(CH\)\(AD\) nên ta có:

\(AM\parallel CN\)\(AN\parallel CM\).

Suy ra \(AMCN\) là hình bình hành.

Do đó, \(AM = CN\).

d) Đúng.

\(ABCD\) là hình bình hành nên hai đường chéo \(AC\)\(BD\) cắt nhau tại trung điểm của mỗi đường mà \(O\) là trung điểm của \(BD\) nên \(O\) cũng là trung điểm của \(AC\).

Mặt khác \(AMCN\) là hình bình hành nên hai đường chéo \(AC\)\(MN\) cắt nhau tại trung điểm của mỗi đường mà \(O\) là trung điểm của \(AC\) nên \(O\) cũng là trung điểm của \(MN\) hay ba điểm \(M,O,N\) thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 24

Vì tam giác vuông \(AHD\)\(\widehat {ADH} = 45^\circ \) nên \(\Delta AHD\) là tam giác vuông cân.

Do đó, \(HD = HA = 4{\rm{ cm}}\).

Ta có \(ABHK\) là hình bình hành \(\left( {AB\parallel HK} \right)\)\(\widehat {AHK} = \widehat {HKB} = 90^\circ \), do đó \(ABHK\) là hình chữ nhật.

Suy ra \(AH = BK = 4{\rm{ cm,}}\) \(AB = HK = 2{\rm{ cm}}{\rm{.}}\)

\(ABCD{\rm{ }}\left( {AB\parallel CD} \right)\) là hình thang cân nên \(\widehat {ADH} = \widehat {BCK} = 45^\circ \).

Do đó, \(\Delta BKC\) cũng là tam giác vuông cân nên \(KB = KC = 4{\rm{ cm}}\).

Ta có: \(DC = DH + HK + KC = 4 + 2 + 4 = 10{\rm{ }}\left( {{\rm{cm}}} \right).\)

Vậy diện tích hình thang cân \(ABCD\) là: \(\frac{{\left( {AB + DC} \right) \cdot AH}}{2} = \frac{{\left( {2 + 10} \right) \cdot 4}}{2} = 24{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).

Lời giải

Cho hình thoi ABCD có góc A = 60 độ, kẻ BH vuông góc AD (H thuộc AD) (ảnh 1)

a) Đúng.

Ta có: \(AB = AD\) (vì \(ABCD\) là hình thoi) và \(\widehat A = 60^\circ \).

Suy ra \(\Delta ABD\) là tam giác đều.

\(BH\) là đường cao trong \(\Delta ABD\) nên đồng thời là đường trung tuyến do đó \(H\) là trung điểm của \(AD\).

b) Đúng.

Xét tứ giác \(ABDE\) có hai đường chéo \(BE\)\(AD\) cắt nhau tại trung điểm \(H\) của mỗi đường.

Do đó, \(ABDE\) là hình bình hành.

Mặt khác \(AD \bot BE\) nên \(ABDE\) là hình thoi.

c) Đúng.

Ta có:

\(ABCD\) là hình thoi suy ra \(DC = AB,DC\parallel AB\). (1)

\(ABDE\) là hình thoi suy ra \(DE = AB,DE\parallel AB\). (2)

Từ (1) và (2) suy ra \(C,D,E\) thẳng hàng (tiền đề Euclid) và \(DC = DE.\)

Vậy \(D\) là trung điểm của \(CE\).

d) Sai.

Kẻ hai đường chéo \(AC\)\(BD\) cắt nhau tại \(I\).

Suy ra \(AC\) vuông góc \(BD\) tại trung điểm \(I\) của mỗi đường (Do \(ABCD\) là hình thoi).

Ta có: \(AC = 2AI\) (vì \(I\) là trung điểm của \(AC\)).

           \(BE = 2BH\) (vì \(H\) là trung điểm của \(BE\)).

\(BH = AI\) (Chứng minh \(\Delta BHA = \Delta AIB\) (ch – gn)) suy ra \(AC = BE.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(125^\circ .\)                    

B. \(65^\circ .\)           
C. \(90^\circ .\)          
D. \(55^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(ABCD\) là hình bình hành.                                 

B. \(\Delta ABC = \Delta CDA\).

C. \(ABCD\) là hình thang cân.                         
D. \(BC\parallel AD.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP