Cho hình bình hành \(ABCD\), đường chéo \(BD.\) Kẻ \(AH\) và \(CK\) vuông góc với \(BD\) lần lượt tại \(H\) và \(K.\) Gọi \(M\) là giao điểm của \(AK\) và \(BC\), gọi \(N\) là giao điểm của \(CH\) và \(AD\) và \(O\) là trung điểm của \(BD\).
a) \(\Delta ADH = \Delta CKB\).
b) \(AK\parallel CH.\)
c) \(AM = CN.\)
d) \(M,O,N\) thẳng hàng.
Cho hình bình hành \(ABCD\), đường chéo \(BD.\) Kẻ \(AH\) và \(CK\) vuông góc với \(BD\) lần lượt tại \(H\) và \(K.\) Gọi \(M\) là giao điểm của \(AK\) và \(BC\), gọi \(N\) là giao điểm của \(CH\) và \(AD\) và \(O\) là trung điểm của \(BD\).
a) \(\Delta ADH = \Delta CKB\).
b) \(AK\parallel CH.\)
c) \(AM = CN.\)
d) \(M,O,N\) thẳng hàng.
Quảng cáo
Trả lời:


a) Sai.
Xét \(\Delta ADH\) và \(\Delta CKB\), có:
\(\widehat {{D_1}} = \widehat {{B_1}}\) (so le trong)
\(AD = BC\) (gt)
Do đó, \(\Delta ADH = \Delta CBK\)(ch – gn).
b) Đúng.
Vì \(\Delta ADH = \Delta CBK\) (cmt) nên \(AH = CK\) (hai góc tương ứng).
Lại có \(AH\parallel CK\) (cùng vuông góc với \(BD\)).
Do đó, \(AKCH\) là hình bình hành.
Suy ra \(AK\parallel CH\).
c) Đúng.
Vì \(M\) là giao điểm của \(AK\) và \(BC\), \(N\) là giao điểm của \(CH\) và \(AD\) nên ta có:
\(AM\parallel CN\) và \(AN\parallel CM\).
Suy ra \(AMCN\) là hình bình hành.
Do đó, \(AM = CN\).
d) Đúng.
Vì \(ABCD\) là hình bình hành nên hai đường chéo \(AC\) và \(BD\) cắt nhau tại trung điểm của mỗi đường mà \(O\) là trung điểm của \(BD\) nên \(O\) cũng là trung điểm của \(AC\).
Mặt khác \(AMCN\) là hình bình hành nên hai đường chéo \(AC\) và \(MN\) cắt nhau tại trung điểm của mỗi đường mà \(O\) là trung điểm của \(AC\) nên \(O\) cũng là trung điểm của \(MN\) hay ba điểm \(M,O,N\) thẳng hàng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 24
Vì tam giác vuông \(AHD\) có \(\widehat {ADH} = 45^\circ \) nên \(\Delta AHD\) là tam giác vuông cân.
Do đó, \(HD = HA = 4{\rm{ cm}}\).
Ta có \(ABHK\) là hình bình hành \(\left( {AB\parallel HK} \right)\) có \(\widehat {AHK} = \widehat {HKB} = 90^\circ \), do đó \(ABHK\) là hình chữ nhật.
Suy ra \(AH = BK = 4{\rm{ cm,}}\) \(AB = HK = 2{\rm{ cm}}{\rm{.}}\)
Vì \(ABCD{\rm{ }}\left( {AB\parallel CD} \right)\) là hình thang cân nên \(\widehat {ADH} = \widehat {BCK} = 45^\circ \).
Do đó, \(\Delta BKC\) cũng là tam giác vuông cân nên \(KB = KC = 4{\rm{ cm}}\).
Ta có: \(DC = DH + HK + KC = 4 + 2 + 4 = 10{\rm{ }}\left( {{\rm{cm}}} \right).\)
Vậy diện tích hình thang cân \(ABCD\) là: \(\frac{{\left( {AB + DC} \right) \cdot AH}}{2} = \frac{{\left( {2 + 10} \right) \cdot 4}}{2} = 24{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
Lời giải
Đáp án: 99

Áp dụng định lí tổng ba góc của một tam giác vào tam giác \(ABC\) ta có;
\(\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \), suy ra \(\widehat {BAC} = 180^\circ - \left( {\widehat {ABC} + \widehat {ACB}} \right) = 21^\circ \).
Vì \(AB\parallel CD\) nên \(\widehat {BAC} = \widehat {ACD} = 21^\circ \) (so le trong).
Xét tam giác \(ACD\) có: \(\widehat {ACD} + \widehat {ADC} + \widehat {CAD} = 180^\circ \) (tổng ba góc trong một tam giác).
Do đó, \(\widehat {CAD} = 180^\circ - \left( {\widehat {ACD} + \widehat {ADC}} \right) = 180^\circ - \left( {60^\circ + 21^\circ } \right) = 99^\circ \).
Vậy \(\widehat {DAC} = 99^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(125^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. Tứ giác có hai cặp cạnh đối song song là hình bình hành.
B. Tứ giác có hai cặp cạnh đối bằng nhau là hình bình hành.
C. Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.