Câu hỏi:

25/09/2025 7 Lưu

Cho tam giác ABC biết \(AB = 8;AC = 5;\widehat A = 60^\circ \).

a) \(B{C^2} = A{B^2} + A{C^2} + 2AB.AC.\cos A\).

b) Diện tích tam giác ABC bằng \(10\sqrt 3 \).

c) Bán kính đường tròn ngoại tiếp tam giác \(ABC\) bằng \(4\sqrt 3 \).

d) Điểm M thuộc cạnh BC sao cho \(BM = 4\). Khi đó \(AM = \frac{{4\sqrt {91} }}{7}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Có \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\).

b) Diện tích tam giác ABC là \[{S_{ABC}} = \frac{1}{2}AB.AC.\sin A = \frac{1}{2}.8.5.\frac{{\sqrt 3 }}{2} = 10\sqrt 3 \].

c) Ta có \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\)\( = {8^2} + {5^2} - 2.8.5.\cos 60^\circ = 49 \Rightarrow BC = 7\).

Áp dụng định lí sin ta có \(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{7}{{\sqrt 3 }} = \frac{{7\sqrt 3 }}{3}\).

d) Ta có \(\cos B = \frac{{{7^2} + {8^2} - {5^2}}}{{2.7.8}} = \frac{{11}}{{14}}\).

Áp dụng định lí côsin cho tam giác ABM ta có \(A{M^2} = A{B^2} + B{M^2} - 2AB.BM.\cos B = \frac{{208}}{7} \Rightarrow AM = \frac{{4\sqrt {91} }}{7}\).

Đáp án: a) Sai;   b) Đúng;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(2{x^2} - 75x - 77 = 0\) \( \Leftrightarrow x = - 1\) hoặc \(x = \frac{{77}}{2}\). Vì \(x \in \mathbb{Z}\) nên \(x = - 1\). Suy ra \(A = \left\{ { - 1} \right\}\).

Vậy tập hợp A chỉ có 1 phần tử.

Trả lời: 1.

Lời giải

Ảnh có chứa hàng, biểu đồ

Nội dung do AI tạo ra có thể không chính xác.

Theo quy tắc hình bình hành ta có \(\overrightarrow {{T_1}} + \overrightarrow {{T_2}} = \overrightarrow F \).

Khi diễn viên xiếc đạt trạng thái cân bằng trên dây, ta có \(\overrightarrow {{T_1}} + \overrightarrow {{T_2}} + \overrightarrow P = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow F = - \overrightarrow P \)\(\left| {\overrightarrow F } \right| = \left| { - \overrightarrow P } \right| = 700\) (N).

Ta có góc tạo bởi \(\overrightarrow {{T_1}} \)\(\overrightarrow {{T_2}} \) bằng 140° \( \Rightarrow \widehat {CDA} = 180^\circ - 140^\circ = 40^\circ \).

Dây không giãn nên \(\left| {\overrightarrow {{T_1}} } \right| = \left| {\overrightarrow {{T_2}} } \right|\).

Xét \(\Delta ADC\)\({F^2} = T_1^2 + T_2^2 - 2{T_1}{T_2}\cos \widehat {CDA}\)\( \Leftrightarrow {F^2} = 2T_1^2\left( {1 - \cos 40^\circ } \right)\)

\( \Rightarrow {T_1} = \sqrt {\frac{{{F^2}}}{{2\left( {1 - \cos 40^\circ } \right)}}} = \sqrt {\frac{{{{700}^2}}}{{2\left( {1 - \cos 40^\circ } \right)}}} \approx 1023\) N.

Câu 3

A. \(\overrightarrow {AB} = \left( {8; - 3} \right)\).          
B. \(\overrightarrow {AB} = \left( { - 2; - 4} \right)\).           
C. \(\overrightarrow {AB} = \left( {2;4} \right)\).     
D. \(\overrightarrow {AB} = \left( {6;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\overrightarrow c \)\(\overrightarrow b \) là hai vectơ cùng phương. 

B. \(\overrightarrow c \)\(\overrightarrow b \) là hai vectơ cùng hướng.      

C. \(\overrightarrow a \)\(\overrightarrow c \) là hai vectơ cùng hướng.                           
D. \(\overrightarrow a \)\(\overrightarrow b \) là hai vectơ cùng phương.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP