Cơn bão Yagi gây thiệt hại nghiêm trọng về người và tài sản cho nước ta, trong đó nặng nề nhất là tại thôn Làng Nủ, xã Phúc Khánh, huyện Bảo Yên, tỉnh Lào Cai, lũ quét và sạt lở đất đã vùi lấp 40 ngôi nhà. Cả nước đã chung tay ủng hộ và xây dựng lại nhà sàn cho người dân Làng Nủ theo thiết kế như hình vẽ dưới đây.

Giả sử áp dụng hệ trục tọa độ \(Oxyz\) như hình vẽ (đơn vị trên các trục là mét). Xét một bên của mái nhà gồm có một hình chữ nhật CDFE và một hình thang ADFG với các điểm \(G\left( {6; - 6;6} \right);C\left( {3;4;8} \right);F\left( {4; - 4;7} \right)\) và điểm \(I\) là trung điểm CE.
Biết góc giữa hai vectơ \(\overrightarrow {DC} \) và \(\overrightarrow {AB} \) bằng \(a^\circ \). Tìm a (kết quả làm tròn đến hàng đơn vị).
Cơn bão Yagi gây thiệt hại nghiêm trọng về người và tài sản cho nước ta, trong đó nặng nề nhất là tại thôn Làng Nủ, xã Phúc Khánh, huyện Bảo Yên, tỉnh Lào Cai, lũ quét và sạt lở đất đã vùi lấp 40 ngôi nhà. Cả nước đã chung tay ủng hộ và xây dựng lại nhà sàn cho người dân Làng Nủ theo thiết kế như hình vẽ dưới đây.

Giả sử áp dụng hệ trục tọa độ \(Oxyz\) như hình vẽ (đơn vị trên các trục là mét). Xét một bên của mái nhà gồm có một hình chữ nhật CDFE và một hình thang ADFG với các điểm \(G\left( {6; - 6;6} \right);C\left( {3;4;8} \right);F\left( {4; - 4;7} \right)\) và điểm \(I\) là trung điểm CE.
Biết góc giữa hai vectơ \(\overrightarrow {DC} \) và \(\overrightarrow {AB} \) bằng \(a^\circ \). Tìm a (kết quả làm tròn đến hàng đơn vị).
Quảng cáo
Trả lời:
Ta có CDFE là hình chữ nhật và I là trung điểm của CE, nên F và D đối xứng nhau qua mặt phẳng \(\left( {Oxz} \right)\).
Có \(F\left( {4; - 4;7} \right)\), suy ra \(D\left( {4;4;7} \right)\).
Xét hình thang ADFG, có A đối xứng với G qua mặt \(\left( {Oxz} \right)\).
Có \(G\left( {6; - 6;6} \right)\), suy ra \(A\left( {6;6;6} \right)\).
Ta có điểm B nằm trên mặt phẳng \(\left( {Oyz} \right)\), tọa độ điểm \(B\left( {0;6;6} \right)\).
Suy ra \(\overrightarrow {AB} = \left( { - 6;0;0} \right)\) và \(\overrightarrow {DC} = \left( { - 1;0;1} \right)\), có:
\({\rm{cos}}\left( {\overrightarrow {AB} ,\overrightarrow {DC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {DC} }}{{\left| {\overrightarrow {AB} \left| . \right|\overrightarrow {DC} } \right|}} = \frac{6}{{\sqrt {{6^2}} .\sqrt {{1^2} + {1^2}} }} = \frac{1}{{\sqrt 2 }}\).
Vậy góc giữa hai vectơ \(\overrightarrow {DC} \) và \(\overrightarrow {AB} \) bằng \(45^\circ \).
Đáp án: 45.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Với hệ trục tọa độ được chọn, máy bay thứ nhất có tọa độ \(A\left( {23;18;2} \right)\) máy bay thứ hai có tọa độ \(B\left( { - 22; - 27;3} \right)\).
Gọi \(M\) là vị trí mục tiêu. Vì mục tiêu di động trên mặt đất, nghĩa là \(M \in mp\left( {Oxy} \right)\) nên tọa độ của \(M\) có dạng \(M\left( {a;b;0} \right)\).
Ta cần tìm tọa độ của \(M\) để \(MA + MB\) nhỏ nhất.
Ta thấy \(A,B\) nằm cùng phía đối với \(mp\left( {Oxy} \right)\).
Gọi \(B'\left( { - 22; - 27; - 3} \right)\) là điểm đối xứng của \(B\) qua \(mp\left( {Oxy} \right) \Rightarrow MB = MB'\).
Có \(MA + MB = MA + MB' \ge AB'\).
Khi đó \(MA + MB\) nhỏ nhất bằng \(AB'\) khi \(M\) là giao điểm của \(AB'\) với \(mp\left( {Oxy} \right)\) nghĩa là lúc này ba điểm \(A,M,B'\) thẳng hàng.
Có \(\overrightarrow {AM} = \left( {a - 23;b - 18; - 2} \right),\overrightarrow {AB'} = \left( { - 45; - 45; - 5} \right)\) mà ba điểm \(A,M,B'\) thẳng hàng.
Suy ra \(\frac{{a - 23}}{{ - 45}} = \frac{{b - 18}}{{ - 45}} = \frac{{ - 2}}{{ - 5}} = \frac{2}{5} \Rightarrow a = 5;b = 0 \Rightarrow M\left( {5;0;0} \right)\).
Lúc đó độ dài đoạn OM là khoảng cách từ mục tiêu đến điểm xuất phát của hai máy bay và \(OM = 5\left( {{\rm{km}}} \right)\).
Đáp án: 5.
Lời giải
a) Sai. Máy bay đang di chuyển từ điểm \[M\left( {500;\,200;\,10} \right)\] đến điểm \[N\left( {800;\,300;\,10} \right)\]. Hoành độ \[x\] và tung \[y\] tăng lên, cao độ \[z\] không đổi. Máy bay đang di chuyển ra xa vị trí đặt ra đa.
b) Đúng. Ta có \[\overrightarrow {MN} \left( {300;\,100;\,0} \right)\] suy ra \(MN = \sqrt {{{300}^2} + {{100}^2} + {0^2}} = 100\sqrt {10} \,\,{\rm{km}}\).
c) Sai. 20 phút \( = \frac{1}{3}\) giờ.
Tốc độ của máy bay khi di chuyển từ \[M\] đến \[N\] là \[\frac{{100\sqrt {10} }}{{\frac{1}{3}}} = 300\sqrt {10} \,\,{\rm{km/h}}\].
d) Sai.

Trong 20 phút, máy bay di chuyển từ điểm \[M\left( {500;\,200;\,10} \right)\] đến điểm \[N\left( {800;\,300;\,10} \right)\].
Nếu giữ nguyên vận tốc và hướng bay thì sau 4 phút tiếp theo máy bay di chuyển đến vị trí điểm \(Q\left( {a;\,b;\,c} \right)\) sao cho \(\overrightarrow {NQ} = \frac{1}{5}\overrightarrow {MN} \).
Suy ra \(\left\{ \begin{array}{l}a - 800 = \frac{1}{5}.300\\b - 300 = \frac{1}{5}.100\\c - 10 = \frac{1}{5}.0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 860\\b = 320\\c = 10\end{array} \right. \Rightarrow Q\left( {860;\,320;\,10} \right)\). Vậy \[a + b + c = 1190\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

