Cơn bão Yagi gây thiệt hại nghiêm trọng về người và tài sản cho nước ta, trong đó nặng nề nhất là tại thôn Làng Nủ, xã Phúc Khánh, huyện Bảo Yên, tỉnh Lào Cai, lũ quét và sạt lở đất đã vùi lấp 40 ngôi nhà. Cả nước đã chung tay ủng hộ và xây dựng lại nhà sàn cho người dân Làng Nủ theo thiết kế như hình vẽ dưới đây.

Giả sử áp dụng hệ trục tọa độ \(Oxyz\) như hình vẽ (đơn vị trên các trục là mét). Xét một bên của mái nhà gồm có một hình chữ nhật CDFE và một hình thang ADFG với các điểm \(G\left( {6; - 6;6} \right);C\left( {3;4;8} \right);F\left( {4; - 4;7} \right)\) và điểm \(I\) là trung điểm CE.
Biết góc giữa hai vectơ \(\overrightarrow {DC} \) và \(\overrightarrow {AB} \) bằng \(a^\circ \). Tìm a (kết quả làm tròn đến hàng đơn vị).
Cơn bão Yagi gây thiệt hại nghiêm trọng về người và tài sản cho nước ta, trong đó nặng nề nhất là tại thôn Làng Nủ, xã Phúc Khánh, huyện Bảo Yên, tỉnh Lào Cai, lũ quét và sạt lở đất đã vùi lấp 40 ngôi nhà. Cả nước đã chung tay ủng hộ và xây dựng lại nhà sàn cho người dân Làng Nủ theo thiết kế như hình vẽ dưới đây.
Giả sử áp dụng hệ trục tọa độ \(Oxyz\) như hình vẽ (đơn vị trên các trục là mét). Xét một bên của mái nhà gồm có một hình chữ nhật CDFE và một hình thang ADFG với các điểm \(G\left( {6; - 6;6} \right);C\left( {3;4;8} \right);F\left( {4; - 4;7} \right)\) và điểm \(I\) là trung điểm CE.
Biết góc giữa hai vectơ \(\overrightarrow {DC} \) và \(\overrightarrow {AB} \) bằng \(a^\circ \). Tìm a (kết quả làm tròn đến hàng đơn vị).
Quảng cáo
Trả lời:

Ta có CDFE là hình chữ nhật và I là trung điểm của CE, nên F và D đối xứng nhau qua mặt phẳng \(\left( {Oxz} \right)\).
Có \(F\left( {4; - 4;7} \right)\), suy ra \(D\left( {4;4;7} \right)\).
Xét hình thang ADFG, có A đối xứng với G qua mặt \(\left( {Oxz} \right)\).
Có \(G\left( {6; - 6;6} \right)\), suy ra \(A\left( {6;6;6} \right)\).
Ta có điểm B nằm trên mặt phẳng \(\left( {Oyz} \right)\), tọa độ điểm \(B\left( {0;6;6} \right)\).
Suy ra \(\overrightarrow {AB} = \left( { - 6;0;0} \right)\) và \(\overrightarrow {DC} = \left( { - 1;0;1} \right)\), có:
\({\rm{cos}}\left( {\overrightarrow {AB} ,\overrightarrow {DC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {DC} }}{{\left| {\overrightarrow {AB} \left| . \right|\overrightarrow {DC} } \right|}} = \frac{6}{{\sqrt {{6^2}} .\sqrt {{1^2} + {1^2}} }} = \frac{1}{{\sqrt 2 }}\).
Vậy góc giữa hai vectơ \(\overrightarrow {DC} \) và \(\overrightarrow {AB} \) bằng \(45^\circ \).
Đáp án: 45.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Tọa độ điểm \(A\) là \(\left( {2;0;0} \right)\).
b) Sai. Ta có \[OD = AD - OA = 8 - 2 = 6\]m.
Tọa độ điểm \[C\left( { - 6;\,6;0} \right)\].
Vì vậy \[\overrightarrow {AC} = \left( { - 8;6;0} \right)\].
c) Sai. Gọi \[M\] là trung điểm của \[HG\] nên \[QM = 7 - 5 = 2\]m, \[MG = \frac{{HG}}{2} = \frac{{AB}}{2} = 3\]m.
Ta có \[QG = \sqrt {Q{M^2} + M{G^2}} = \sqrt {{2^2} + {3^2}} = \sqrt {13} \]m.
Diện tích cần lợp là \[S = 2{S_{PQGF}} = 2.8.\sqrt {13} = 16\sqrt {13} \]m.
Số tiền cần phải trả là \[S.22.11\,000 \approx 13\,961\,000\] đồng.
d) Đúng. Gọi \[J\] là trung điểm của \[BC\] nên \[J\left( { - 2;6;0} \right)\].
Suy ra \[I\] là trung điểm của \[FG\] nên \[I\left( { - 2;6;5} \right)\].
Ta có \[KI = \sqrt {{{\left( { - 2} \right)}^2} + {6^2} + {0^2}} = 2\sqrt {10} \]m.
Vì vậy \[{d_{\min }} = OK + KI = 5 + 2\sqrt {10} \].
Lời giải
Ta có: \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = \sqrt {\left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right)} \)
\( = \sqrt {F_1^2 + F_2^2 + F_3^2 + 2\overrightarrow {{F_1}} {{\vec F}_2} + 2\overrightarrow {{F_2}} {{\vec F}_3} + 2{{\vec F}_3}{{\vec F}_1}} \)
\( = \sqrt {F_1^2 + F_2^2 + F_3^2 + 2{F_1}{F_2}{\rm{cos}}110^\circ + 2{F_2}{F_3}{\rm{cos}}90^\circ + 2{F_1}{F_3}{\rm{cos}}90^\circ } \)
\( = \sqrt {{9^2} + {4^2} + {7^2} + 2.9.4.{\rm{cos}}110^\circ + 2.4.7.0 + 2.9.7.0} \approx 11\,\,\left( {\rm{N}} \right)\).
Đáp án: 11.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.