Câu hỏi:

27/09/2025 13 Lưu

Phần 1. Trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Thời gian hoàn thành giải chạy của các vận động viên được cho như bảng sau:

Khoảng biến thiên của mẫu số liệu ghép nhóm này là (ảnh 1)

Khoảng biến thiên của mẫu số liệu ghép nhóm này là

A. 15.                              
B. 25.                            
C. 37.                                   
D. 20.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Khoảng biến thiên: \(35 - 15 = 20\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Giá trị đại diện của nhóm \[\left[ {15;16} \right)\] là \[\frac{{15 + 16}}{2} = 15,5\]

b) Sai. Số trung bình của mẫu số liệu trên là

\[\overline x  = \frac{{14,5.1 + 15,5.3 + 16,5.8 + 17,5.6 + 18,5.2}}{{20}} = 16,75\]

c) Đúng. Phương sai của mẫu số liệu trên là

\[\begin{array}{l}{s^2} = \frac{1}{{20}}\left[ {1.{{\left( {14,5 - 16,75} \right)}^2} + 3.{{\left( {15,5 - 16,75} \right)}^2} + 8.{{\left( {16,5 - 16,75} \right)}^2}} \right.\\\left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + 6.{{\left( {17,5 - 16,75} \right)}^2} + 2.{{\left( {18,5 - 16,75} \right)}^2}} \right] = 0,9875.\end{array}\]

d) Đúng. Độ lệch chuẩn của mẫu số liệu trên là \[s = \sqrt {{s^2}}  = \sqrt {0,9875}  = \frac{{\sqrt {395} }}{{20}}\].

Lời giải

Cỡ mẫu \[n = 50\].

Gọi \[{x_1};\,\,{x_2};\,\,...;\,\,{x_{50}}\] là mẫu số liệu gốc gồm cân nặng của 50 quả xoài được xếp theo thứ tự không giảm.

Ta có: \[{x_1},\,\,{x_2},\,\,{x_3} \in \left[ {250;290} \right)\]; \[{x_4},\,\,...,\,\,{x_{16}} \in \left[ {290;330} \right)\]; \[{x_{17}},\,\,...,\,\,{x_{34}} \in \left[ {330;370} \right)\];

\[{x_{35}},\,\,...,\,\,{x_{45}} \in \left[ {370;410} \right)\]; \[{x_{46}},\,\,...,\,\,{x_{50}} \in \left[ {410;450} \right)\].

Tứ phân vị thứ nhất của mẫu số liệu gốc là \[{x_{13}} \in \left[ {290;330} \right)\]. Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \[{Q_1} = 290 + \frac{{\frac{{50}}{4} - 3}}{{13}}.\left( {330 - 290} \right) = \frac{{4150}}{{13}}\].

Tứ phân vị thứ ba của mẫu số liệu gốc là \[{x_{38}} \in \left[ {370;410} \right)\]. Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \[{Q_3} = 370 + \frac{{\frac{{3.50}}{4} - \left( {3 + 13 + 18} \right)}}{{11}}.\left( {410 - 370} \right) = \frac{{4210}}{{11}}\].

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \[{\Delta _Q} = \frac{{4210}}{{11}} - \frac{{4150}}{{13}} = \frac{{9080}}{{143}} \approx 63,5\].

Đáp án: 63,5.

Câu 6

A. 23,75.                         
B. 27,5.                         
C. 31,88.                              
D. 8,125.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \([2;3,5)\).                  
B. \([3,5;5)\).                
C. \([5;6,5)\).                       
D. \([6,5;8)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP