PHẦN 3: CÂU TRẮC NGHIỆM TRẢ LỜI NGẮN
Cho hình hộp \[ABCD.A'B'C'D'\]. Gọi \(M\), \(N\) lần lượt là các điểm trên đoạn \(AC\)và \(C'D\) sao cho, \(DN = \frac{1}{3}DC'\), \(AM = \frac{2}{3}AC\). Khi phân tích \(\overrightarrow {BN} = x.\overrightarrow {BA} + y.\overrightarrow {BC} + z.\overrightarrow {BB'} \) thì giá trị \(x + y + z\) bằng
PHẦN 3: CÂU TRẮC NGHIỆM TRẢ LỜI NGẮN
Cho hình hộp \[ABCD.A'B'C'D'\]. Gọi \(M\), \(N\) lần lượt là các điểm trên đoạn \(AC\)và \(C'D\) sao cho, \(DN = \frac{1}{3}DC'\), \(AM = \frac{2}{3}AC\). Khi phân tích \(\overrightarrow {BN} = x.\overrightarrow {BA} + y.\overrightarrow {BC} + z.\overrightarrow {BB'} \) thì giá trị \(x + y + z\) bằngCâu hỏi trong đề: Đề kiểm tra Vectơ trong không gian (có lời giải) !!
Quảng cáo
Trả lời:

Ta có: \(DN = \frac{1}{3}DC' \Leftrightarrow NC' = 2ND \Rightarrow \overrightarrow {NC'} = - 2\overrightarrow {ND} \).
Suy ra điểm N chia đoạn thẳng \[{\rm{D}}C'\] theo tỉ số \(k = - 2\). Do đó \(\overrightarrow {BN} = \frac{{\overrightarrow {BC'} + 2\overrightarrow {BD} }}{3}\)
hay \(\overrightarrow {BN} = \frac{1}{3}\overrightarrow {BC'} + \frac{2}{3}\overrightarrow {BD} \Leftrightarrow \overrightarrow {BN} = \frac{1}{3}\left( {\overrightarrow {BB'} + \overrightarrow {BC} } \right) + \frac{2}{3}\left( {\overrightarrow {BA} + \overrightarrow {BC} } \right) \Leftrightarrow \overrightarrow {BN} = \frac{2}{3}\overrightarrow {BA} + \overrightarrow {BC} + \frac{1}{3}\overrightarrow {BB'} \).
Vậy \(x + y + z = 2\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ý a) Đúng: Vì \[\left\{ \begin{array}{l}\overrightarrow {A'C} - \overrightarrow {A'A} = \overrightarrow {AC} \\\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \end{array} \right. \Rightarrow \overrightarrow {A'C} - \overrightarrow {AA'} = \overrightarrow {AB} + \overrightarrow {AD} \]
Ý b) Sai: Vì \[\overrightarrow {BC'} = \overrightarrow {BB'} + \overrightarrow {B'C'} = \overrightarrow {AA'} + \overrightarrow {B'C'} \].
Ý c) Đúng: Vì \[\overrightarrow {C'O} = \overrightarrow {C'A'} + \overrightarrow {A'O} = \overrightarrow {C'A'} - \overrightarrow {OA'} \].
Ý d) Sai: Ta có: \(\overrightarrow {A'D} .\overrightarrow {A'B} = \left| {\overrightarrow {A'D} } \right|.\left| {\overrightarrow {A'B} } \right|.\cos \left( {\overrightarrow {A'D} ,\overrightarrow {A'B} } \right) = a\sqrt 2 .a\sqrt 2 .c{\rm{os}}60^\circ = {a^2}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.