PHẦN 3: CÂU TRẮC NGHIỆM TRẢ LỜI NGẮN
Cho hai vectơ \(\overrightarrow a ,\overrightarrow b \) vuông góc với nhau và \(\overrightarrow {\left| a \right|} = 6,\left| {\overrightarrow b } \right| = 4\). Tính \(\left( {\overrightarrow a - \overrightarrow b } \right)\left( {2\overrightarrow a + \overrightarrow b } \right)\)
PHẦN 3: CÂU TRẮC NGHIỆM TRẢ LỜI NGẮN
Cho hai vectơ \(\overrightarrow a ,\overrightarrow b \) vuông góc với nhau và \(\overrightarrow {\left| a \right|} = 6,\left| {\overrightarrow b } \right| = 4\). Tính \(\left( {\overrightarrow a - \overrightarrow b } \right)\left( {2\overrightarrow a + \overrightarrow b } \right)\)Câu hỏi trong đề: Đề kiểm tra Vectơ trong không gian (có lời giải) !!
Quảng cáo
Trả lời:
\(\overrightarrow a ,\overrightarrow b \) vuông góc nên \(\overrightarrow a .\overrightarrow b = 0\)
Ta có \(\left( {\overrightarrow a - \overrightarrow b } \right)\left( {2\overrightarrow a + \overrightarrow b } \right) = 2{\overrightarrow a ^2} - {\overrightarrow b ^2} - \overrightarrow a .\overrightarrow b = {2.6^2} - {4^2} - 0 = 56\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: \(3,08\)
Với hệ trục toạ độ đã chọn thì vị trí hiện tại của khinh khí cầu là \(A\left( {2,5;1,7;0,6} \right)\).
Khi đó khoảng cách từ địa điểm xuất phát đến địa điểm hiện tại của khinh khí cầu là: \(OA = \sqrt {2,{5^2} + 1,{7^2} + 0,{6^2}} \approx 3,08\left( {km} \right)\)
Lời giải
![Cho hình hộp \(ABCD.A'B'C'D'\)có tất cả các mặt đều là hình thoi cạnh \[\sqrt 6 \] và các góc \(\widehat {BAA'} = \widehat {BAD} = \widehat {DAA'} = {60^0}\). Tính độ dài \(AC'\) (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/6-1759238314.png)
Ta có \(\overrightarrow {AC'} = \overrightarrow {AA'} + \overrightarrow {AC} = \overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} \)
Xét \(AC{'^2} = {\overrightarrow {AC'} ^2} = {\left( {\overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} } \right)^2}\)
=\[AA{'^2} + A{B^2} + A{D^2}\]+\(2AA'.AB.\cos \widehat {BAA'}\)+\(2AA'.AD.\cos \widehat {A'AD} + 2AB.AD.\cos \widehat {BAD}\)
\( = 3{\left( {\sqrt 6 } \right)^2} + 3.2\sqrt 6 .\sqrt 6 .\cos {60^0} = 6\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(k = \frac{1}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
