Cho tam giác \(ABC\) có điểm \(O\) thỏa mãn: \(\left| {\overrightarrow {OA} + \overrightarrow {OB} - 2\overrightarrow {OC} } \right| = \left| {\overrightarrow {OA} - \overrightarrow {OB} } \right|\). Khẳng định nào sau đây là đúng?
Cho tam giác \(ABC\) có điểm \(O\) thỏa mãn: \(\left| {\overrightarrow {OA} + \overrightarrow {OB} - 2\overrightarrow {OC} } \right| = \left| {\overrightarrow {OA} - \overrightarrow {OB} } \right|\). Khẳng định nào sau đây là đúng?
Câu hỏi trong đề: Đề kiểm tra Vectơ trong không gian (có lời giải) !!
Quảng cáo
Trả lời:
Chọn C
Gọi \(M\) là trung điểm \(AB\), ta có \(\overrightarrow {OA} + \overrightarrow {OB} = 2\overrightarrow {OM} \).
Do đó, \[\left| {\overrightarrow {OA} + \overrightarrow {OB} - 2\overrightarrow {OC} } \right| = \left| {\overrightarrow {OA} - \overrightarrow {OB} } \right| \Leftrightarrow \left| {2\overrightarrow {OM} - 2\overrightarrow {OC} } \right| = \left| {\overrightarrow {BA} } \right|\]\( \Leftrightarrow 2\left| {\overrightarrow {CM} } \right| = BA \Leftrightarrow CM = \frac{1}{2}BA.\,\,\left( 1 \right)\)
Vì \(M\) là trung điểm \(AB\)nên\(CM\) là đường trung tuyến của \(\Delta ABC\), Từ (1) suy ra, tam giác \(\Delta ABC\) vuông tại \(C\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
![Cho hình lăng trụ tam giác \[ABC.A'B'C'\]. Đặt \[\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrig (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/4-1759241227.png)
Ta có: \[\overrightarrow b - \overrightarrow c + \overrightarrow d = \overrightarrow {AB} - \overrightarrow {AC} + \overrightarrow {BC} = \overrightarrow {CB} + \overrightarrow {BC} = \overrightarrow 0 \].
Lời giải
![Cho hình lập phương \[B'C\] có đường chéo \[A'C = \frac{3}{ (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/20-1759241959.png)
Ta có: \[A'{C^2} = A'{A^2} + A{C^2} = 3A'{A^2} \Rightarrow A'A = \frac{{A'C}}{{\sqrt 3 }} = \frac{{\sqrt 3 }}{{16}}\].
Gọi \[O'\] là tâm của hình vuông \(A'B'C'D'\).
Lại có : \[\overrightarrow {OS} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} + \overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} \]
\[ = \left( {\overrightarrow {OA} + \overrightarrow {OC} } \right) + \left( {\overrightarrow {OB} + \overrightarrow {OD} } \right) + \left( {\overrightarrow {OA'} + \overrightarrow {OC'} } \right) + \left( {\overrightarrow {OB'} + \overrightarrow {OD'} } \right)\]
\[ = 2\overrightarrow {OO'} + 2\overrightarrow {OO'} = 4\overrightarrow {OO'} \]
Suy ra \[OS = \left| {\overrightarrow {OS} } \right| = \left| {4\overrightarrow {OO'} } \right| = 4OO' = 4.\frac{{\sqrt 3 }}{{16}} = \frac{{\sqrt 3 }}{4}\].
Khi đó \(a = 1,b = 4 \Rightarrow P = {a^2} + {b^2} = 17\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\sqrt 3 a\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Cho hình lập phương \[ABCD.A'B'C'D'\] có cạnh bằng \[2\]. Tính \(\overrightarrow {AB} .\overrightarrow {A'C'} \). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/17-1759241886.png)
![Cho lập phươn g \[ABCD.A'B'C'D'\]có độ dài cạnh bằng \[a\]. Tính độ dài của vectơ \[\overrightarrow {AD'} + \overrightarrow {BA'} \]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/9-1759241490.png)