Trong không gian \(Oxyz\), cho tam giác \(ABC\) có \[A\left( {1;1;0} \right),B\left( { - 1;0;1} \right),C\left( {1; - 2;3} \right)\].
a) Tứ giác \(ABCD\) là hình bình hành khi \(D\left( {3; - 1;2} \right)\).
b) Độ dài đoạn thẳng\(AB\) là \(\sqrt 6 \).
c) Biết \(E \in Oy,\) khi đó tam giác \(BCE\) vuông tại \(E\) thì \(E\left( {0; - 6;0} \right)\).
d) \[M\] là điểm nằm trên đoạn \[AB\] sao cho \[MA = 2MB\] thì độ dài \[OM\] bằng \[\frac{{\sqrt 6 }}{3}\].
Trong không gian \(Oxyz\), cho tam giác \(ABC\) có \[A\left( {1;1;0} \right),B\left( { - 1;0;1} \right),C\left( {1; - 2;3} \right)\].
a) Tứ giác \(ABCD\) là hình bình hành khi \(D\left( {3; - 1;2} \right)\).
b) Độ dài đoạn thẳng\(AB\) là \(\sqrt 6 \).
c) Biết \(E \in Oy,\) khi đó tam giác \(BCE\) vuông tại \(E\) thì \(E\left( {0; - 6;0} \right)\).
d) \[M\] là điểm nằm trên đoạn \[AB\] sao cho \[MA = 2MB\] thì độ dài \[OM\] bằng \[\frac{{\sqrt 6 }}{3}\].
Quảng cáo
Trả lời:

a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
a) Đúng
Gọi \(D\left( {x;y;z} \right)\).
Ta có: \(\overrightarrow {AB} = \left( { - 2; - 1;1} \right),\,\overrightarrow {DC} = \left( {1 - x; - 2 - y;3 - z} \right)\)
\(ABCD\) là hình bình hành khi \(\overrightarrow {AB} = \overrightarrow {DC} \, \Leftrightarrow \left\{ \begin{array}{l}1 - x = - 2\\ - 2 - y = - 1\\3 - z = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = - 1\\z = 2\end{array} \right.\). Vậy \(D\left( {3; - 1;2} \right)\).
b) Đúng
Ta có: \[\overrightarrow {AB} = \left( { - 2; - 1;1} \right) \Rightarrow AB = \sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 1} \right)}^2} + {1^2}} = \sqrt 6 \]
c) Sai
Gọi \(E\left( {0;m;0} \right) \in Oy\)
Tam giác \(BCE\) vuông tại \(E\) thì \(\overrightarrow {EB} .\overrightarrow {EC} = 0.\,\,\left( 1 \right)\)
Ta có: \[\overrightarrow {EB} = \left( { - 1; - m;1} \right),\,\overrightarrow {EC} = \left( {1; - m - 2;3} \right)\]
Khi đó \[\left( 1 \right) \Leftrightarrow {m^2} + 2m + 2 = 0\,\,\left( {VN} \right).\]
Vậy không có điểm \(E\) thỏa mãn.
d) Đúng
Điểm M thuộc đoạn thẳng AB và \[MA = 2MB\]
Nên \[\overrightarrow {MA} = - 2\overrightarrow {MB} \]
\[ \Leftrightarrow \left\{ \begin{array}{l}{x_A} - {x_M} = - 2\left( {{x_B} - {x_M}} \right)\\{y_A} - {y_M} = - 2\left( {{y_B} - {y_M}} \right)\\{z_A} - {z_M} = - 2\left( {{z_B} - {z_M}} \right)\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}1 - {x_M} = - 2\left( { - 1 - {x_M}} \right)\\1 - {y_M} = - 2\left( { - {y_M}} \right)\\ - {z_M} = - 2\left( {1 - {z_M}} \right)\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}3{x_M} = - 1\\3{y_M} = 1\\3{z_M} = 2\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{x_M} = \frac{{ - 1}}{3}\\{y_M} = \frac{1}{3}\\{z_M} = \frac{2}{3}\end{array} \right.\]
\[ \Rightarrow M\left( {\frac{{ - 1}}{3}\,;\frac{1}{3}\,;\frac{2}{3}} \right)\].
Độ dài đoạn thẳng \[OM = \sqrt {{{\left( {\frac{{ - 1}}{3}} \right)}^2} + {{\left( {\frac{1}{3}} \right)}^2} + {{\left( {\frac{2}{3}} \right)}^2}} = \frac{{\sqrt 6 }}{3}\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục tọa độ \[Oxyz\] như hình vẽ (\(O\) là trung điểm của \(BC\)). Ta có: \(A'\left( {0;\, - 150\sqrt 3 ;\,300} \right),\) \(B\left( {150;\,0;\,0} \right),\) \(C\left( { - 150;\,0;\,0} \right),\) \(C'\left( { - 150;\,0;\,300} \right),\)\(\overrightarrow {CA'} = \left( {150;\, - 150\sqrt 3 ;\,300} \right)\), \(\overrightarrow {BC'} = \left( { - 300;\,0;\,300} \right)\)
Gọi \(m,n\) thỏa mãn \(\left\{ \begin{array}{l}\overrightarrow {CM} = m\overrightarrow {CA'} \\\overrightarrow {BN} = n\overrightarrow {BC'} \end{array} \right.\) ta có \(M\left( { - 150 + 150m;\, - 150\sqrt 3 m;\,300m} \right)\), \(N\left( {150 - 300n;\,0;\,300n} \right)\)
\( \Rightarrow \overrightarrow {MN} = \left( { - 150m - 300n + 300;\,150\sqrt 3 m;\,300n - 300m} \right)\).
Đường thẳng \(MN\) là đường vuông góc chung của \(A'C\) và \(BC'\)nên:
\(\left\{ \begin{array}{l}\overrightarrow {MN} .\overrightarrow {CA'} = 0\\\overrightarrow {MN} .\overrightarrow {BC'} = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} - 4m + n = - 1\\ - m + 4n = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m = \frac{2}{5}\\n = \frac{3}{5}\end{array} \right.\)\( \Rightarrow \overrightarrow {MN} = \left( {60;\,60\sqrt 3 ;\,60} \right) \Rightarrow MN = 60\sqrt 5 \)
Số tiền xây cầu là: \(T = 60\sqrt 5 .5 \approx 671\)tỷ đồng.
Lời giải
Đáp án: \(\left| {\overrightarrow F } \right| = 5\sqrt 2 \) .
Gọi tứ diện là \(S.ABC\) và \(M,\,G,\,G'\) lần lượt là trung điểm của \(BC\), trọng tâm của \(\Delta ABC\)và vị trí đặt đèn.
\(S.ABC\) là tứ diện đều \( \Rightarrow \Delta ABC\) đều nên \(G\)là tâm của đường tròn ngoại tiếp \(\Delta ABC\).
\( \Rightarrow S,\,G',\,G\) thẳng hàng và \(SG' = \frac{{5\sqrt 6 }}{2}\).
Chọn hệ trục tọa độ \(Oxyz\) như hình vẽ sao cho \(M\left( {0;0;0} \right)\)
Có: \(AM = 5\sqrt 3 \), \(MG = \frac{1}{3}AM = \frac{{5\sqrt 3 }}{3}\),
\(AG = \frac{2}{3}AM = \frac{{10\sqrt 3 }}{3}\), \(SG = \sqrt {S{A^2} - A{G^2}} = \frac{{10\sqrt 6 }}{3}\) .
Khi đó: \(S\left( {\frac{{5\sqrt 3 }}{3};0;\frac{{10\sqrt 6 }}{3}} \right)\), \(A\left( {5\sqrt 3 ;0;0} \right)\), \(B\left( {0; - 5;0} \right)\), \(C\left( {0;5;0} \right)\)
\(G\) là trọng tâm của \(\Delta ABC\) \( \Rightarrow G\left( {\frac{{5\sqrt 3 }}{3};0;0} \right)\)\(\)
\( \Rightarrow SG' = \frac{3}{4}SG\) \( \Rightarrow \overrightarrow {SG'} = \frac{3}{4}\overrightarrow {SG} \)
\( \Rightarrow \left\{ \begin{array}{l}{x_{G'}} - {x_S} = \frac{3}{4}\left( {{x_G} - {x_S}} \right)\\{y_{G'}} - {y_S} = \frac{3}{4}\left( {{y_G} - {y_S}} \right)\\{z_{G'}} - {z_S} = \frac{3}{4}\left( {{z_G} - {z_S}} \right)\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}{x_{G'}} = \frac{{5\sqrt 3 }}{3}\\{y_{G'}} = 0\\{x_{G'}} = \frac{{5\sqrt 6 }}{6}\end{array} \right.\) \( \Rightarrow G'\left( {\frac{{5\sqrt 3 }}{3};0;\frac{{5\sqrt 6 }}{6}} \right)\).
\( \Rightarrow G'A = \frac{{5\sqrt 6 }}{2}\).
\(\cos \left( {\overrightarrow {AG'} ,\overrightarrow {SG'} } \right) = \frac{{\overrightarrow {SG'} .\overrightarrow {AG'} }}{{\left| {\overrightarrow {SG'} } \right|.\left| {\overrightarrow {AG'} } \right|}} = - \frac{1}{3}\).
Gọi \(\overrightarrow F ,\,\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} \) lần lượt là lực tổng hợp và lực của hai dây tác dụng lên đèn
Có \(\overrightarrow F = \overrightarrow {F{}_1} + \overrightarrow {{F_2}} = \overrightarrow {AG'} + \overrightarrow {SG'} \)
\( \Rightarrow \left| {\overrightarrow F } \right| = \sqrt {{{\left( {\overrightarrow {AG'} + \overrightarrow {SG'} } \right)}^2}} \)
\( \Rightarrow \left| {\overrightarrow F } \right| = \sqrt {SG{'^2} + AG{'^2} + 2\overrightarrow {AG'} .\overrightarrow {SG'} } \)
\( \Rightarrow \left| {\overrightarrow F } \right| = \sqrt {SG{'^2} + AG{'^2} + 2AG'.SG'.\cos \left( {\overrightarrow {AG'} ,\overrightarrow {SG'} } \right)} \)
\( \Rightarrow \left| {\overrightarrow F } \right| = \sqrt {{{\left( {\frac{{5\sqrt 6 }}{2}} \right)}^2} + {{\left( {\frac{{5\sqrt 6 }}{2}} \right)}^2} + 2.\frac{{5\sqrt 6 }}{2}.\frac{{5\sqrt 6 }}{2}.\left( { - \frac{1}{3}} \right)} \) \( = 5\sqrt 2 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
PHẦN II. TRẮC NGHIỆM ĐÚNG SAI
Trong không gian với hệ trục tọa độ Oxyz, cho \(A\left( {1; - 1;2} \right)\), \(B\left( { - 2;0;3} \right)\), \(C\left( {0;1; - 2} \right)\). Các mệnh đề sau đúng hay sai?
a) Tọa độ trọng tâm tam giác \(ABC\) là \(G\left( {\frac{{ - 1}}{3};0;1} \right)\).
b) Độ dài đoạn thẳng \(AB = \sqrt {11} \).
c) Tích có hướng \([\overrightarrow {AB} ,\,\overrightarrow {AC} ] = \left( { - 6;13; - 5} \right)\).
d) \(M\left( {a;b;c} \right)\)là điểm thuộc mặt phẳng \[\left( {Oxy} \right)\] sao cho biểu thức \[S = 2.\overrightarrow {MA} .\overrightarrow {MB} + \overrightarrow {MB} .\overrightarrow {MC} + \overrightarrow {MC} .\overrightarrow {MA} \] đạt giá trị nhỏ nhất. Khi đó biểu thức \[T = a - b + c = \frac{1}{4}\].
Trong không gian với hệ trục tọa độ Oxyz, cho \(A\left( {1; - 1;2} \right)\), \(B\left( { - 2;0;3} \right)\), \(C\left( {0;1; - 2} \right)\). Các mệnh đề sau đúng hay sai?
a) Tọa độ trọng tâm tam giác \(ABC\) là \(G\left( {\frac{{ - 1}}{3};0;1} \right)\).
b) Độ dài đoạn thẳng \(AB = \sqrt {11} \).
c) Tích có hướng \([\overrightarrow {AB} ,\,\overrightarrow {AC} ] = \left( { - 6;13; - 5} \right)\).
d) \(M\left( {a;b;c} \right)\)là điểm thuộc mặt phẳng \[\left( {Oxy} \right)\] sao cho biểu thức \[S = 2.\overrightarrow {MA} .\overrightarrow {MB} + \overrightarrow {MB} .\overrightarrow {MC} + \overrightarrow {MC} .\overrightarrow {MA} \] đạt giá trị nhỏ nhất. Khi đó biểu thức \[T = a - b + c = \frac{1}{4}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Trong không gian \(Oxyz\), cho tam giác \(ABC\) có \[A\left( {1;2;0} \right),B\left( {0;1;1} \right),C\left( {2;1;0} \right)\].
a) Tam giác \(ABC\) vuông tại \(A.\)
b) Chu vi tam giác là \(\sqrt 7 + \sqrt 3 + \sqrt 2 .\)
c) Diện tích tam giác \(ABC\)là \(\sqrt 6 .\)
d) Tâm đường tròn ngoại tiếp tam giác \(ABC\)là \(I\left( {1;1;\frac{1}{2}} \right).\)
Trong không gian \(Oxyz\), cho tam giác \(ABC\) có \[A\left( {1;2;0} \right),B\left( {0;1;1} \right),C\left( {2;1;0} \right)\].
a) Tam giác \(ABC\) vuông tại \(A.\)
b) Chu vi tam giác là \(\sqrt 7 + \sqrt 3 + \sqrt 2 .\)
c) Diện tích tam giác \(ABC\)là \(\sqrt 6 .\)
d) Tâm đường tròn ngoại tiếp tam giác \(ABC\)là \(I\left( {1;1;\frac{1}{2}} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.