Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu di chuyển với vận tốc và hướng không đổi từ điểm \[M\left( {500;\,200;\,10} \right)\] đến điểm \[N\left( {800;\,300;\,10} \right)\] trong 20 phút.
a) Máy bay đang di chuyển theo hướng tiến lại gần vị trí đặt ra đa.
b) Khoảng cách \[MN = 100\sqrt {10} \,{\rm{km}}\].
c) Tốc độ của máy bay khi di chuyển từ \[M\] đến \[N\] là \[150\sqrt {10} \,{\rm{km/h}}\].
d) Nếu tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 4 phút tiếp theo là \[Q\left( {a;\,b;\,c} \right)\] với \[a + b + c = 1191\].
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu di chuyển với vận tốc và hướng không đổi từ điểm \[M\left( {500;\,200;\,10} \right)\] đến điểm \[N\left( {800;\,300;\,10} \right)\] trong 20 phút.
a) Máy bay đang di chuyển theo hướng tiến lại gần vị trí đặt ra đa.
b) Khoảng cách \[MN = 100\sqrt {10} \,{\rm{km}}\].
c) Tốc độ của máy bay khi di chuyển từ \[M\] đến \[N\] là \[150\sqrt {10} \,{\rm{km/h}}\].
d) Nếu tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 4 phút tiếp theo là \[Q\left( {a;\,b;\,c} \right)\] với \[a + b + c = 1191\].
Quảng cáo
Trả lời:
a) Sai. Máy bay đang di chuyển từ điểm \[M\left( {500;\,200;\,10} \right)\] đến điểm \[N\left( {800;\,300;\,10} \right)\]. Hoành độ \[x\] và tung \[y\] tăng lên, cao độ \[z\] không đổi. Máy bay đang di chuyển ra xa vị trí đặt ra đa.
b) Đúng. Ta có \[\overrightarrow {MN} \left( {300;\,100;\,0} \right)\] suy ra \(MN = \sqrt {{{300}^2} + {{100}^2} + {0^2}} = 100\sqrt {10} \,\,{\rm{km}}\).
c) Sai. 20 phút \( = \frac{1}{3}\) giờ.
Tốc độ của máy bay khi di chuyển từ \[M\] đến \[N\] là \[\frac{{100\sqrt {10} }}{{\frac{1}{3}}} = 300\sqrt {10} \,\,{\rm{km/h}}\].
d) Sai.

Trong 20 phút, máy bay di chuyển từ điểm \[M\left( {500;\,200;\,10} \right)\] đến điểm \[N\left( {800;\,300;\,10} \right)\].
Nếu giữ nguyên vận tốc và hướng bay thì sau 4 phút tiếp theo máy bay di chuyển đến vị trí điểm \(Q\left( {a;\,b;\,c} \right)\) sao cho \(\overrightarrow {NQ} = \frac{1}{5}\overrightarrow {MN} \).
Suy ra \(\left\{ \begin{array}{l}a - 800 = \frac{1}{5}.300\\b - 300 = \frac{1}{5}.100\\c - 10 = \frac{1}{5}.0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 860\\b = 320\\c = 10\end{array} \right. \Rightarrow Q\left( {860;\,320;\,10} \right)\). Vậy \[a + b + c = 1190\].
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có CDFE là hình chữ nhật và I là trung điểm của CE, nên F và D đối xứng nhau qua mặt phẳng \(\left( {Oxz} \right)\).
Có \(F\left( {4; - 4;7} \right)\), suy ra \(D\left( {4;4;7} \right)\).
Xét hình thang ADFG, có A đối xứng với G qua mặt \(\left( {Oxz} \right)\).
Có \(G\left( {6; - 6;6} \right)\), suy ra \(A\left( {6;6;6} \right)\).
Ta có điểm B nằm trên mặt phẳng \(\left( {Oyz} \right)\), tọa độ điểm \(B\left( {0;6;6} \right)\).
Suy ra \(\overrightarrow {AB} = \left( { - 6;0;0} \right)\) và \(\overrightarrow {DC} = \left( { - 1;0;1} \right)\), có:
\({\rm{cos}}\left( {\overrightarrow {AB} ,\overrightarrow {DC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {DC} }}{{\left| {\overrightarrow {AB} \left| . \right|\overrightarrow {DC} } \right|}} = \frac{6}{{\sqrt {{6^2}} .\sqrt {{1^2} + {1^2}} }} = \frac{1}{{\sqrt 2 }}\).
Vậy góc giữa hai vectơ \(\overrightarrow {DC} \) và \(\overrightarrow {AB} \) bằng \(45^\circ \).
Đáp án: 45.
Lời giải
Ta có: \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = \sqrt {\left( {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right)} \)
\( = \sqrt {F_1^2 + F_2^2 + F_3^2 + 2\overrightarrow {{F_1}} {{\vec F}_2} + 2\overrightarrow {{F_2}} {{\vec F}_3} + 2{{\vec F}_3}{{\vec F}_1}} \)
\( = \sqrt {F_1^2 + F_2^2 + F_3^2 + 2{F_1}{F_2}{\rm{cos}}110^\circ + 2{F_2}{F_3}{\rm{cos}}90^\circ + 2{F_1}{F_3}{\rm{cos}}90^\circ } \)
\( = \sqrt {{9^2} + {4^2} + {7^2} + 2.9.4.{\rm{cos}}110^\circ + 2.4.7.0 + 2.9.7.0} \approx 11\,\,\left( {\rm{N}} \right)\).
Đáp án: 11.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


