Một cấp số cộng có số hạng đầu bằng 5 và công sai bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng \(2700?\)
Một cấp số cộng có số hạng đầu bằng 5 và công sai bằng 2. Hỏi phải lấy tổng của bao nhiêu số hạng đầu của cấp số cộng này để có tổng bằng \(2700?\)
Câu hỏi trong đề: Đề kiểm tra Cấp số cộng (có lời giải) !!
Quảng cáo
Trả lời:
Gọi n là số các số hạng đầu cần lấy tổng, ta có:
\(2700 = {S_n} = \frac{n}{2}[2 \times 5 + (n - 1) \times 2] = \frac{n}{2}(8 + 2n)\)
Do đó \(4n + {n^2} - 2700 = 0\). Giải phương trình bậc hai này ta được \(n = - 54\) hoặc \(n = 50\)
Vậy phải lấy 50 số hạng đầu.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
a) b) Gọi \(d\) là công sai của cấp số cộng, ta có: \({u_5} = 18 \Leftrightarrow {u_1} + 4d = 18\);
\(\begin{array}{l}4{S_n} = {S_{2n}} \Leftrightarrow \frac{{4n}}{2}\left[ {2{u_1} + (n - 1)d} \right] = \frac{{2n}}{2}\left[ {2{u_1} + (2n - 1)d} \right]\\ \Leftrightarrow 4{u_1} + (2n - 2)d = 2{u_1} + (2n - 1)d \Leftrightarrow 2{u_1} - d = 0.\end{array}\)
Từ (1) và (2) suy ra \({u_1} = 2,d = 4\).
c) Số hạng tổng quát \({u_n} = 2 + (n - 1)4 = 4n - 2\) suy ra \({u_{15}} = 58\)
d) Tổng 15 số hạng đầu cấp số cộng là:
\({S_{15}} = \frac{{15}}{2}\left( {2{u_1} + 14d} \right) = \frac{{15}}{2}(2 \cdot 2 + 14 \cdot 4) = 450.{\rm{ }}\)
Câu 2
Lời giải
Chọn C
Ta có \({u_{n + 1}} = 1 - 2n\), Ta có \({u_{n + 1}} - {u_n} = - 2,\,\forall n \in {\mathbb{N}^*}\), suy ra \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_1} = 1\) và công sai \(d = - 2\). Vậy \({S_{60}} = \frac{{60}}{2}\left( {2{u_1} + 59d} \right) = - 3840\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.