Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất, 18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba, và cứ như vậy . Nếu muốn hội trường đó có sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư đó phải thiết kế tối thiểu bao nhiêu hàng ghế?
Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất, 18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba, và cứ như vậy . Nếu muốn hội trường đó có sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư đó phải thiết kế tối thiểu bao nhiêu hàng ghế?
Câu hỏi trong đề: Đề kiểm tra Cấp số cộng (có lời giải) !!
Quảng cáo
Trả lời:
Số ghế ở mỗi hàng lập thành một cấp số cộng với số hạng đầu \({u_1} = 15\) và công sai \(d = 3\). Gọi n là số các số hạng đầu cua cấp số cộng cần lấy tổng, ta có:
\(870 = {S_n} = \frac{n}{2}[2 \times 15 + (n - 1) \times 3] = \frac{n}{2}(27 + 3n)\)
Do đó \(27n + 3{n^2} - 1740 = 0\), suy ra \(n = 20,n = - 29\)
Vậy cần phải thiết kế 20 hàng ghế
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
a) b) Gọi \(d\) là công sai của cấp số cộng, ta có: \({u_5} = 18 \Leftrightarrow {u_1} + 4d = 18\);
\(\begin{array}{l}4{S_n} = {S_{2n}} \Leftrightarrow \frac{{4n}}{2}\left[ {2{u_1} + (n - 1)d} \right] = \frac{{2n}}{2}\left[ {2{u_1} + (2n - 1)d} \right]\\ \Leftrightarrow 4{u_1} + (2n - 2)d = 2{u_1} + (2n - 1)d \Leftrightarrow 2{u_1} - d = 0.\end{array}\)
Từ (1) và (2) suy ra \({u_1} = 2,d = 4\).
c) Số hạng tổng quát \({u_n} = 2 + (n - 1)4 = 4n - 2\) suy ra \({u_{15}} = 58\)
d) Tổng 15 số hạng đầu cấp số cộng là:
\({S_{15}} = \frac{{15}}{2}\left( {2{u_1} + 14d} \right) = \frac{{15}}{2}(2 \cdot 2 + 14 \cdot 4) = 450.{\rm{ }}\)
Câu 2
Lời giải
Chọn C
Ta có \({u_{n + 1}} = 1 - 2n\), Ta có \({u_{n + 1}} - {u_n} = - 2,\,\forall n \in {\mathbb{N}^*}\), suy ra \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_1} = 1\) và công sai \(d = - 2\). Vậy \({S_{60}} = \frac{{60}}{2}\left( {2{u_1} + 59d} \right) = - 3840\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.