Giả sử kết quả khảo sát hai khu vực \(A\) và \(B\) về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình được cho ở bảng sau:
Tuổi kết hôn
\([19;22)\)
\([22;25)\)
\([25;28)\)
\([28;31)\)
\([31;34)\)
Số phụ nữ khu vực \(A\)
10
27
31
25
7
Số phụ nữ khu vực \(B\)
47
40
11
2
0
Các mệnh đề sau đúng hay sai?
a) Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực A là: \(15\) (tuổi)
b) Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực B là: \(12\)(tuổi)
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm ứng với khu vực A là: \(\frac{{61}}{3}\) (tuổi)
d) Nếu so sánh theo khoảng tứ phân vị thì phụ nữ ở khu vực B có độ tuổi kết hôn đồng đều hơn
Giả sử kết quả khảo sát hai khu vực \(A\) và \(B\) về độ tuổi kết hôn của một số phụ nữ vừa lập gia đình được cho ở bảng sau:
|
Tuổi kết hôn |
\([19;22)\) |
\([22;25)\) |
\([25;28)\) |
\([28;31)\) |
\([31;34)\) |
|
Số phụ nữ khu vực \(A\) |
10 |
27 |
31 |
25 |
7 |
|
Số phụ nữ khu vực \(B\) |
47 |
40 |
11 |
2 |
0 |
Các mệnh đề sau đúng hay sai?
a) Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực A là: \(15\) (tuổi)
b) Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực B là: \(12\)(tuổi)
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm ứng với khu vực A là: \(\frac{{61}}{3}\) (tuổi)
d) Nếu so sánh theo khoảng tứ phân vị thì phụ nữ ở khu vực B có độ tuổi kết hôn đồng đều hơn
Câu hỏi trong đề: Đề kiểm tra Cuối chương 3 (có lời giải) !!
Quảng cáo
Trả lời:
|
a) Đúng |
b) Đúng |
c) Sai |
c) Đúng |
Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực A là: \(34 - 19 = 15\) (tuổi)
Khoảng biến thiên của mẫu số liệu ghép nhóm ứng với khu vực B là: \(31 - 19 = 12\)(tuổi)
Cỡ mẫu \(n = 100\)
Gọi \({x_1};{x_2}; \ldots ;{x_{100}}\) là mẫu số liệu gốc về độ tuổi kết hôn của phụ nữ ở khu vực A được xếp theo thứ tự không giảm.
Ta có: \({x_1};{x_2}; \ldots ;{x_{10}} \in [19;22);{x_{11}}; \ldots ;{x_{37}} \in [22;25);{x_{38}}; \ldots ;{x_{68}} \in [25;28);{x_{69}}; \ldots ;{x_{93}} \in [28;31)\); \({x_{94}}; \ldots ;{x_{100}} \in [31;34)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{25}} + {x_{26}}} \right) \in [22;25)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 22 + \frac{{\frac{{100}}{4} - 10}}{{27}}(25 - 22) = \frac{{71}}{3}\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{x_{75}} + {x_{76}}} \right) \in [28;31)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 28 + \frac{{\frac{{3.100}}{4} - (10 + 27 + 31)}}{{25}}(31 - 28) = \frac{{721}}{{25}}\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{388}}{{75}}\)
Gọi \({y_1};{y_2}; \ldots ;{y_{100}}\) là mẫu số liệu gốc về độ tuổi kết hôn của phụ nữ ở khu vực B được xếp theo thứ tự không giảm.
Ta có: \({y_1};{y_2}; \ldots ;{y_{47}} \in [19;22);{y_{48}}; \ldots ;{y_{87}} \in [22;25);{y_{88}}; \ldots ;{y_{98}} \in [25;30);{y_{99}};{y_{100}} \in [28;31)\)
Tứ phân vị thứ nhất của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_{25}} + {y_{26}}} \right) \in [19;22)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}^\prime = 19 + \frac{{\frac{{100}}{4}}}{{47}}(22 - 19) = \frac{{968}}{{47}}\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \(\frac{1}{2}\left( {{y_{75}} + {y_{76}}} \right) \in [22;25)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}^\prime = 22 + \frac{{\frac{{3.100}}{4} - 47}}{{40}}(25 - 22) = \frac{{241}}{{10}}\)
Có \({\Delta _Q}^\prime < {\Delta _Q}\) nên phụ nữ ở khu vực B có độ tuổi kết hôn đồng đều hơn.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Trong mỗi khoảng cân nặng, giá trị đại diện là trung bình cộng của giá trị hai đầu mút nên ta có bảng sau:
|
Cân nặng (kg) |
\(43\) |
\(48\) |
\(53\) |
\(58\) |
\(63\) |
\(68\) |
|
Số học sinh |
\(10\) |
\(7\) |
\(16\) |
\(4\) |
\(2\) |
\(3\) |
Tổng số học sinh là \(n = 42.\)
Cân nặng trung bình của học sinh lớp 11A là: \(\bar x = \frac{{10.43 + 7.48 + 16.53 + 4.58 + 2.63 + 3.68}}{{42}} \approx 51,81\) kg.
Lời giải
Lập lại mẫu số liệu ghép nhóm theo giá trị đại diện, ta được:
|
Giá trị đại diện |
\(6,5\) |
\(7,5\) |
\(8,5\) |
\(9,5\) |
\(10,5\) |
|
Học sinh lớp \(10A\) |
\(8\) |
\(10\) |
\(13\) |
\(10\) |
\(9\) |
|
Học sinh lớp \(10B\) |
\(4\) |
\(12\) |
\(17\) |
\(14\) |
\(3\) |
Ta có:
Cỡ mẫu: \(n = 50\)
Xét số liệu của lớp \(10A\):
Số trung bình: \({\overline x _{10A}} = \frac{{8.6,5 + 10.7,5 + 13.8,5 + 10.9,5 + 9.10,5}}{{50}} = 8,54\).
Độ lệch chuẩn: \({\sigma _{10A}} = \sqrt {\frac{{{{8.6,5}^2} + {{10.7,5}^2} + {{13.8,5}^2} + {{10.9,5}^2} + {{9.10,5}^2}}}{{50}} - {{8,54}^2}} \approx 1,33\).
Xét số liệu của lớp \(10B\):
Số trung bình: \({\overline x _{10B}} = \frac{{4.6,5 + 12.7,5 + 17.8,5 + 14.9,5 + 3.10,5}}{{50}} = 8,5\).
Độ lệch chuẩn: \({\sigma _{10B}} = \sqrt {\frac{{{{4.6,5}^2} + {{12.7,5}^2} + {{17.8,5}^2} + {{14.9,5}^2} + {{3.10,5}^2}}}{{50}} - {{8,5}^2}} \approx 1,04\).
Do đó \({\sigma _{10A}} - {\sigma _{10B}} \approx 1,33 - 1,04 = 0,29\).
Câu 3
A. \({Q_1} = \frac{{136}}{5}\,,\,{Q_3} = \frac{{800}}{{21}}\).
B. \({Q_1} = \frac{{1360}}{{37}}\,,\,{Q_3} = \frac{{800}}{{21}}\).
C. \({Q_1} = \frac{{1360}}{{37}}\,,\,{Q_3} = \frac{{3280}}{{83}}\).
D. \({Q_1} = \frac{{136}}{5}\,,\,{Q_3} = \frac{{3280}}{{83}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.