Câu hỏi:

05/10/2025 20 Lưu

Cho hình chóp S.ABCD, gọi M,N,P theo thứ tự là trung điểm của các cạnh BC,CD và\[SA\]. Mặt phẳng \[\left( {MNP} \right)\]cắt hình chóp \[S.ABCD\]theo thiết diện là hình gì?              

A. Ngũ giác.      
B. Tứ giác.      
C. Tam giác.    
D. Lục giác.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Cho hình chóp\[S.ABCD\], gọi \[M,N,P\] theo thứ tự là trung điểm của các cạnh \[BC,CD\] và\[SA\]. Mặt phẳng \[\left( {MNP} \right)\]cắt hình chóp \[S.ABCD\]theo thiết diện là hình gì? 	A. Ngũ giác.	B. Tứ giác.	C. Tam giác.	D. Lục giác. (ảnh 1)

Trong mặt phẳng\[\left( {ABCD} \right)\], gọi \[E\] là giao điểm của \[MN\] với \[AD,F\] là giao điểm của \[MN\]với\[AB\]

Khi đó:

\[\begin{array}{l}\left( {MNP} \right) \cap \left( {ABCD} \right) = MN\,\,\\\left( {MNP} \right) \cap \left( {SAB} \right) = PF\,\\\left( {MNP} \right) \cap \left( {SAD} \right) = PE\end{array}\]

Gọi \[K\] là giao điểm của \[PF\]với \[SB\] và \[I\] là giao điểm của \[PE\] với\[SD\].

Suy ra \[\left( {MNP} \right) \cap \left( {SCD} \right) = NI;\,\,\,\,\left( {MNP} \right) \cap \left( {SBC} \right) = MK\,\]

Vậy Mặt phẳng \[\left( {MNP} \right)\]cắt hình chóp \[S.ABCD\]theo thiết diện là hình ngũ giác \[MNIPK\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Sai

 

a) \(MN = (MNP) \cap (ABC)\)

b Trong \((ABC)\) gọi \(H = MN \cap BC\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{H \in MN \subset (MNP)}\\{H \in BC \subset (BCD)}\end{array} \Rightarrow H \in (MNP) \cap (BCD)} \right. & (1)\)

Lại có: \(\left\{ {\begin{array}{*{20}{l}}{P \in (MNP)}\\{P \in (BCD)}\end{array} \Rightarrow P \in (MNP) \cap (BCD)(2)} \right.\)

Từ (1) và (2) suy ra \(HP = (MNP) \cap (BCD)\)

Cho tứ diện ABCD. Gọi \(M\) là điểm trên cạnh \(AB,N\) là điểm thuộc cạnh \(AC\) sao cho \(MN\) không song song với \(BC\). Gọi \(P\) là điểm nằm trong \(\Delta BCD\). Khi đó: (ảnh 1)

c) Trong \((BCD)\) gọi \(K = HP \cap BD\)

Ta có: HMN(MNP)HBC(BCD)H(MNP)(BCD)(1)

Lại có: \(\left\{ {\begin{array}{*{20}{l}}{M \in (MNP)}\\{M \in AB \subset (ABD)}\end{array} \Rightarrow M \in (MNP) \cap (ABD)(2)} \right.\)

Từ (1) và (2) suy ra \(MK \in (MNP) \cap (ABD)\).

d) Trong \((BCD)\) gọi \(F = HK \cap DC\).

Trình bày tương tự như hai câu trên ta được \(NF = (MNP) \cap (ACD)\)

Lời giải

Vì điểm \(O\) nằm trong tam giác \(BCD\) nên đường thẳng \(OD\) cắt cạnh \(BC\) tại \(E\). Vì \(E\) thuộc \(OD\) nên \(E\) thuộc mặt phẳng \((AOD)\). Vì \(E\) cũng thuộc \(BC\) nên \(E\) là giao điểm của đường thẳng \(BC\) và mặt phẳng \((AOD)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(I\)là giao điểm của \(CM\)với \(BD\).                      
B. \(J\)là giao điểm của \(CM\)với \(SO\)\(\left( {O = AC \cap BD} \right)\).              
C. \(H\)là giao điểm của \(CM\)với \(SB\).                     
D. \(N\)là giao điểm của \(CM\)với \(SD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. giao điểm của \(MN\)với \(BC\).                    
B. giao điểm của \(MP\)với \(BC\).                 
C. giao điểm của \(MN\)với \(AB\).                    
D. giao điểm của \(MP\)với \(AC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP