Câu hỏi:

05/10/2025 19 Lưu

Cho hình chóp S.ABCD với \(M\) là một điểm trên cạnh \(SC,N\) là một điểm trên cạnh \(BC\). Gọi \(O = AC \cap BD\)\(K = AN \cap CD\). Khi đó:

a) \(SO\) là giao tuyến của hai mặt phẳng \((SAC)\)\((SBD)\).

b) Giao điểm của đường thẳng \(AM\) và mặt phẳng \((SBD)\) là điểm nằm trên cạnh \(SO\).

c) \(KM\) là giao tuyến của hai mặt phẳng \((AMN)\)\((SCD)\).

d) Giao điểm của đường thẳng \(SD\) và mặt phẳng \((AMN)\) là điểm nằm trên cạnh \(KM\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Đúng

c) Đúng

d) Đúng

 

a) Tìm giao tuyến của hai mặt phẳng \((SAC)\)\((SBD)\) :

Dễ thấy \(S\) là điểm chung của hai mặt phẳng \((SAC)\)\((SBD)\).

Trong mặt phẳng \((ABCD)\), gọi \(O = AC \cap BD\).

\(\left\{ {\begin{array}{*{20}{l}}{O \in AC,AC \subset (SAC)}\\{O \in BD,BD \subset (SBD)}\end{array} \Rightarrow O \in (SAC) \cap (SBD)} \right.\).

Vậy \(SO = (SAC) \cap (SBD)\).

b) Tìm giao điểm của \(AM\) và mặt phẳng \((SBD)\) :

Trong mặt phẳng \((SAC)\), gọi \(P = AM \cap SO\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{P \in AM}\\{P \in SO,SO \subset (SBD)}\end{array} \Rightarrow P = AM \cap (SBD)} \right.\).

Cho hình chóp S.ABCD với \(M\) là một điểm trên cạnh \(SC,N\) là một điểm trên cạnh \( (ảnh 1)

c) Xét mặt phẳng phụ \((SCD)\) chứa \(SD\). Ta tìm giao tuyến của hai mặt phẳng \((AMN)\)\((SCD)\).

Trong mặt phẳng \((ABCD)\), gọi \(K = AN \cap CD\).

Khi đó: \(\left\{ {\begin{array}{*{20}{l}}{K \in AN,AN \subset (AMN)}\\{K \in CD,CD \subset (SCD)}\end{array} \Rightarrow K \in (AMN) \cap (SCD)} \right.\).

Mặt khác: \(M \in SC,SC \subset (SCD) \Rightarrow M \in (SCD) \Rightarrow M \in (SCD) \cap (AMN)\).

Vậy \(KM = (SCD) \cap (AMN)\).

d) Trong mặt phẳng \((SCD)\), gọi \(H = KM \cap SD\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{H \in SD}\\{H \in KM,KM \subset (AMN)}\end{array} \Rightarrow H = SD \cap (AMN)} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Sai

 

a) \(MN = (MNP) \cap (ABC)\)

b Trong \((ABC)\) gọi \(H = MN \cap BC\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{H \in MN \subset (MNP)}\\{H \in BC \subset (BCD)}\end{array} \Rightarrow H \in (MNP) \cap (BCD)} \right. & (1)\)

Lại có: \(\left\{ {\begin{array}{*{20}{l}}{P \in (MNP)}\\{P \in (BCD)}\end{array} \Rightarrow P \in (MNP) \cap (BCD)(2)} \right.\)

Từ (1) và (2) suy ra \(HP = (MNP) \cap (BCD)\)

Cho tứ diện ABCD. Gọi \(M\) là điểm trên cạnh \(AB,N\) là điểm thuộc cạnh \(AC\) sao cho \(MN\) không song song với \(BC\). Gọi \(P\) là điểm nằm trong \(\Delta BCD\). Khi đó: (ảnh 1)

c) Trong \((BCD)\) gọi \(K = HP \cap BD\)

Ta có: HMN(MNP)HBC(BCD)H(MNP)(BCD)(1)

Lại có: \(\left\{ {\begin{array}{*{20}{l}}{M \in (MNP)}\\{M \in AB \subset (ABD)}\end{array} \Rightarrow M \in (MNP) \cap (ABD)(2)} \right.\)

Từ (1) và (2) suy ra \(MK \in (MNP) \cap (ABD)\).

d) Trong \((BCD)\) gọi \(F = HK \cap DC\).

Trình bày tương tự như hai câu trên ta được \(NF = (MNP) \cap (ACD)\)

Lời giải

Vì điểm \(O\) nằm trong tam giác \(BCD\) nên đường thẳng \(OD\) cắt cạnh \(BC\) tại \(E\). Vì \(E\) thuộc \(OD\) nên \(E\) thuộc mặt phẳng \((AOD)\). Vì \(E\) cũng thuộc \(BC\) nên \(E\) là giao điểm của đường thẳng \(BC\) và mặt phẳng \((AOD)\).

Câu 3

A. \(I\)là giao điểm của \(CM\)với \(BD\).                      
B. \(J\)là giao điểm của \(CM\)với \(SO\)\(\left( {O = AC \cap BD} \right)\).              
C. \(H\)là giao điểm của \(CM\)với \(SB\).                     
D. \(N\)là giao điểm của \(CM\)với \(SD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. giao điểm của \(MN\)với \(BC\).                    
B. giao điểm của \(MP\)với \(BC\).                 
C. giao điểm của \(MN\)với \(AB\).                    
D. giao điểm của \(MP\)với \(AC\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP