Câu hỏi:

05/10/2025 55 Lưu

Cho hai mặt phẳng \((P),(Q)\) cắt nhau theo giao tuyến \(d\) và hai đường thẳng \(a,b\) lần lượt nằm trong \((P),(Q)\). Chứng minh rằng nếu hai đường thẳng \(a,b\) cắt nhau thì giao điểm của chúng thuộc đường thẳng \(d\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hai mặt phẳng \((P),(Q)\) cắt nhau theo giao tuyến \(d\) và hai đường thẳng \(a,b\) lần lượt nằm trong \((P),(Q)\). Chứng minh rằng nếu hai đường thẳng \(a,b\) cắt nhau thì giao điểm của chúng thuộc đường thẳng \(d\). (ảnh 1)

Gọi \(I\) là giao điểm của \(a\)\(b\). Khi đó, \(I\) vừa thuộc \((P)\) vừa thuộc \((Q)\). Suy ra \(I\) thuộc giao tuyến của hai mặt phẳng \((P)\)\((Q)\). Vậy \(I\) thuộc \(d\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Sai

 

a) \(MN = (MNP) \cap (ABC)\)

b Trong \((ABC)\) gọi \(H = MN \cap BC\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{H \in MN \subset (MNP)}\\{H \in BC \subset (BCD)}\end{array} \Rightarrow H \in (MNP) \cap (BCD)} \right. & (1)\)

Lại có: \(\left\{ {\begin{array}{*{20}{l}}{P \in (MNP)}\\{P \in (BCD)}\end{array} \Rightarrow P \in (MNP) \cap (BCD)(2)} \right.\)

Từ (1) và (2) suy ra \(HP = (MNP) \cap (BCD)\)

Cho tứ diện ABCD. Gọi \(M\) là điểm trên cạnh \(AB,N\) là điểm thuộc cạnh \(AC\) sao cho \(MN\) không song song với \(BC\). Gọi \(P\) là điểm nằm trong \(\Delta BCD\). Khi đó: (ảnh 1)

c) Trong \((BCD)\) gọi \(K = HP \cap BD\)

Ta có: HMN(MNP)HBC(BCD)H(MNP)(BCD)(1)

Lại có: \(\left\{ {\begin{array}{*{20}{l}}{M \in (MNP)}\\{M \in AB \subset (ABD)}\end{array} \Rightarrow M \in (MNP) \cap (ABD)(2)} \right.\)

Từ (1) và (2) suy ra \(MK \in (MNP) \cap (ABD)\).

d) Trong \((BCD)\) gọi \(F = HK \cap DC\).

Trình bày tương tự như hai câu trên ta được \(NF = (MNP) \cap (ACD)\)

Câu 2

A. giao điểm của \(MN\)với \(BC\).                    
B. giao điểm của \(MP\)với \(BC\).                 
C. giao điểm của \(MN\)với \(AB\).                    
D. giao điểm của \(MP\)với \(AC\).

Lời giải

Chọn C

Vậy giao điểm của \(MN\)với \(\left( {ABC} \right)\)là giao điểm của \(MN\)với \(AB\). (ảnh 1)

Trong \(\left( {SAB} \right)\),\(MN \cap AB = \left\{ I \right\} \Rightarrow \left\{ \begin{array}{l}I \in MN\\I \in AB \Rightarrow I \in \left( {ABC} \right)\end{array} \right.\)\[ \Rightarrow MN \cap \left( {ABC} \right) = \left\{ I \right\}\].

Vậy giao điểm của \(MN\)với \(\left( {ABC} \right)\)là giao điểm của \(MN\)với \(AB\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(I\)là giao điểm của \(CM\)với \(BD\).                      
B. \(J\)là giao điểm của \(CM\)với \(SO\)\(\left( {O = AC \cap BD} \right)\).              
C. \(H\)là giao điểm của \(CM\)với \(SB\).                     
D. \(N\)là giao điểm của \(CM\)với \(SD\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP