Cho biết tính đúng sai của mỗi phát biểu sau (xét trong không gian):
a) Hai đường thẳng không có điểm chung thì chúng song song với nhau.
b) Hai đường thẳng không có điểm chung thì chúng chéo nhau.
c) Hai đường thẳng có điểm chung thì chúng cắt nhau.
d) Hai đường thẳng không thể cùng nằm trên một mặt phẳng thì chúng chéo nhau.
Cho biết tính đúng sai của mỗi phát biểu sau (xét trong không gian):
a) Hai đường thẳng không có điểm chung thì chúng song song với nhau.
b) Hai đường thẳng không có điểm chung thì chúng chéo nhau.
c) Hai đường thẳng có điểm chung thì chúng cắt nhau.
d) Hai đường thẳng không thể cùng nằm trên một mặt phẳng thì chúng chéo nhau.
Câu hỏi trong đề: Đề kiểm tra Hai đường thẳng song song (có lời giải) !!
Quảng cáo
Trả lời:

a) Sai |
b) Sai |
c) Sai |
d) Đúng |
Phát biểu A và B sai vì hai đường thẳng không có điểm chung thì có thể là chúng chéo nhau hoặc song song với nhau.
Phát biểu C sai vì hai đường có điểm chung thì chúng có thể cắt nhau hoặc trùng nhau.
Phát biểu D đúng (tính chất cơ bản).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Ta có \[\left( {ABCD} \right) \cap \left( {SCD} \right) = CD\]; \[\left( {ABCD} \right) \cap \left( {MAB} \right) = AB\]; \[\left( {MAB} \right) \cap \left( {SCD} \right) = d\] và \[AB\,{\rm{//}}\,CD\]nên \[AB\,\,;\,\,CD\,\,;\,\,d\] đôi một song song \[\left( 1 \right)\].
Mặt khác \[M\]là điểm chung của \[\left( {MAB} \right);\,\,\left( {SCD} \right)\] \[\left( 2 \right)\].
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[d\] đi qua\[M\] và song song với \[CD\], cắt \[SD\]tại \[N\].
Khi đó thiết diện của hình chóp khi cắt bởi mặt phẳng \[\left( {MAB} \right)\] là một hình thang.
Lời giải
a) Đúng |
b) Sai |
c) Sai |
d) Sai |
Xác định \(M,N\) :
Trong mặt phẳng \((SAC)\), kẻ \(CI\) cắt \(SA\) tại \(M\);
Trong mặt phẳng \((SBD)\), kẻ \(DI\) cắt \(SB\) tại \(N\).
Vì \(\left\{ {\begin{array}{*{20}{l}}{M \in CI,CI \subset (ICD)}\\{M \in SA}\end{array} \Rightarrow M = SA \cap (ICD)} \right.\).
Tương tự: \(\left\{ {\begin{array}{*{20}{l}}{N \in DI,DI \subset (ICD)}\\{N \in SB}\end{array} \Rightarrow N = SB \cap (ICD)} \right.\).
Tính \(MN\) theo \(a\) :
Gọi \(E\) là trung điểm \(BN,OE\) là đường trung bình của tam giác \(BDN\) \( \Rightarrow OE//DN\).
Trong tam giác \(SOE\), ta có \(NI\) qua trung điểm \(I\) của \(SO\) và \(NI//OE,N\) là trung điểm của \(SE\).
Vậy \(SN = NE = EB\) hay \(SN = \frac{1}{3}SB\).
Hoàn toàn tương tự, ta chứng minh được \(SM = \frac{1}{3}SA\).
Khi đó hai tam giác \(SMN,SAB\) đồng dạng vì có góc \(S\) chung và \(\frac{{SM}}{{SA}} = \frac{{SN}}{{SB}} = \frac{1}{3}\).
Xét tam giác \(SAB\), theo định lí Thalès, ta có:
\(\frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{1}{3} \Rightarrow MN = \frac{{AB}}{3} = \frac{a}{3}{\rm{. }}\)
Chứng minh \(SK//BC//AD\) :
Dễ thấy \(S\) là điểm chung của hai mặt phẳng \((SBC)\) và \((SAD)\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{K \in CN,CN \subset (SBC)}\\{K \in DM,DM \subset (SAD)}\end{array} \Rightarrow K \in (SBC) \cap (SAD)} \right.\).
Vì vậy \(SK = (SBC) \cap (SAD)\).
Khi đó: \(\left\{ {\begin{array}{*{20}{l}}{SK = (SBC) \cap (SAD)}\\{BC \subset (SBC),AD \subset (SAD) \Rightarrow SK//BC//AD.}\\{BC//AD}\end{array}} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.