Cho hình chóp S.ABCD, có đáy ABCD là một hình bình hành tâm \(O\). Gọi \(I,K\) lần lượt là trung điểm của \(SB\) và \(SD\). Khi đó:
a) \(SO\) là giao tuyến của \((SAC)\) và \((SBD)\)
b) Giao điểm \(J\) của \(SA\) với \((CKB)\) thuộc đường thẳng đi qua \(K\) và song song với \(DC\)
c) Giao tuyến của \((OIA)\) và \((SCD)\) là đường thẳng đi qua \(C\) và song song với \(SD\)
d) \(CD//IJ\)
Cho hình chóp S.ABCD, có đáy ABCD là một hình bình hành tâm \(O\). Gọi \(I,K\) lần lượt là trung điểm của \(SB\) và \(SD\). Khi đó:
a) \(SO\) là giao tuyến của \((SAC)\) và \((SBD)\)
b) Giao điểm \(J\) của \(SA\) với \((CKB)\) thuộc đường thẳng đi qua \(K\) và song song với \(DC\)
c) Giao tuyến của \((OIA)\) và \((SCD)\) là đường thẳng đi qua \(C\) và song song với \(SD\)
d) \(CD//IJ\)
Câu hỏi trong đề: Đề kiểm tra Hai đường thẳng song song (có lời giải) !!
Quảng cáo
Trả lời:

a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
\(\begin{array}{l}{\rm{ a) }}\left\{ {\begin{array}{*{20}{l}}{O \in AC \subset (SAC)}\\{O \in BD \subset (SBD)}\end{array} \Rightarrow O \in (SAB) \cap (SCD)} \right.\\S \in (SAB) \cap (SCD)\\ \Rightarrow SO = (SAC) \cap (SBD).\end{array}\)
b) Tứ giác \(ABCD\) là hình bình hành nên \(AB//CD;AD//BC\).
Ta có : \(\left\{ {\begin{array}{*{20}{l}}{AD//CB}\\{AD \subset (SAD)}\\{BC \subset (SBC)}\\{K \in (KBC) \cap (SAD)}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{Kx = (KBC) \cap (SAD)}\\{Kx//AD//BC}\end{array}} \right.} \right.\).
Trong \((SAD)\) gọi \(J = Kx \cap SA\), có \( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{J \in SA}\\{J \in Kx \subset (BKC)}\end{array} \Rightarrow J = SA \cap (BKC)} \right.\)
c) Có \(OI\) là đường trung bình của \(\Delta SBD \Rightarrow OI//SD\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{OI//SD}\\{OI \subset (OIA)}\\{SD \subset (SCD)}\\{C \in (OIA) \cap (SCD)}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{Cy = (OIA) \cap (SCD)}\\{Cy//SD//OI}\end{array}} \right.} \right.\).
d) Ta có:
\(IJ//AB\) (\(IJ\) là đường trung bình của \(\Delta SAB\))
\(AB//CD\) (tứ giác \(ABCD\) là hình bình hành) \( \Rightarrow CD//IJ\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Dễ dàng thấy được: \(IJ\) là đường trung bình của tam giác \(SAC\) \( \Rightarrow IJ\parallel AC\).
Câu 2
Lời giải
Chọn A
Ta có: \(\frac{{AG}}{{AI}} = \frac{{AE}}{{AJ}} = \frac{2}{3}\) \( \Rightarrow EG\parallel IJ\)
Mà \(IJ\parallel CD\) (do \(IJ\) là đường trung bình của tam giác \(BCD\))
\( \Rightarrow EG\parallel CD\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.