Câu hỏi:

06/10/2025 305 Lưu

Cho hình chóp S.ABCDABCD là hình thang cân đáy lớn \(AD\). \(M,N\) lần lượt là hai trung điểm của \(AB\)\(CD\). \((P)\) là mặt phẳng qua \(MN\) và cắt mặt bên \((SBC)\) theo một giao tuyến. Thiết diện của \((P)\) và hình chóp là              

A. Hình bình hành.    
B. Hình thang.              
C. Hình chữ nhật.      
D. Hình vuông.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B 

Có MN // BC nên MN // (SBC)

Do đó (P) cắt (SBC) theo giao tuyến PQ song song MN.

Vậy thiết diện là hình thang MNPQ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1:

Cho hình chóp \(S.ABCD\) có đáy là hình thang, đáy nhỏ \(AB = a\), đáy lớn \(CD = 2a\). Gọi \(E\) là trung điểm của \(SC\). Chứng minh rằng \(BE//(SAD)\). (ảnh 1)

Gọi \(F\) là trung điểm của \(SD\).\(EF\) là đường trung bình của tam giác \(SCD\).

Suy ra \(EF//CD\)\(EF = \frac{1}{2}CD\).

\(AB//CD\)\(AB = \frac{1}{2}CD\). Do đó, \(EF//AB\)\(EF = AB\) hay \(ABEF\) là hình bình hành.

Suy ra \(BE//AF\). Mà \(AF \subset (SAD)\). Vậy \(BE//(SAD)\).

Lời giải

Cho tứ diện \(ABCD\). Gọi \(M,N\) lần lượt là hai điểm thuộc hai cạnh \(AB\) và \(CD\). Đặt \((\alpha )\) là mặt phẳng qua \(MN\) và song song với \(BC\). Tìm giao tuyến của \((\alpha )\) với các mặt của tứ diện \(ABCD\). (ảnh 1)

Ta có: \(BC \subset (BCD);N \in (\alpha ) \cap (BCD)\); \((\alpha )//BC\).

Suy ra \((\alpha ) \cap (BCD) = Nx\), vói \(Nx//BC\).

Trong mặt phẳng \((BCD)\), gọi \(P\) là giao điểm của \(Nx\)\(BD\).

Suy ra \(NP = (\alpha ) \cap (BCD)\).

Ta có \(BC \subset (ABC);M \in (\alpha ) \cap (ABC)\);\((\alpha )//BC\).

Suy ra \((\alpha ) \cap (ABC) = My\) với \(My//BC\).

Trong mặt phẳng \((ABC)\), gọi \(Q\) là giao điểm của \(My\)\(AC\).

Suy ra \(MQ = (\alpha ) \cap (ABC)\).

Từ đó, dễ thấy: \((\alpha ) \cap (ABD) = MP;(\alpha ) \cap (ACD) = QN\).

Câu 3

A. \(PQ\;{\rm{//}}\;\left( {BCD} \right)\).                     
B. \(GQ\;{\rm{//}}\;\left( {BCD} \right)\).              
C. \(PQ\;{\rm{//}}\;\left( {ACD} \right)\).                     
D. \(Q \in \left( {GDP} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

 Cho tứ diện \(ABCD\). Gọi \(M,N\) lần lượt là trung điểm của \(AB\)\(AD\).

Chứng minh rằng \(MN//(BCD)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP