Cho hình chóp S.ABCD có ABCD là hình thang cân đáy lớn \(AD\). \(M,N\) lần lượt là hai trung điểm của \(AB\) và \(CD\). \((P)\) là mặt phẳng qua \(MN\) và cắt mặt bên \((SBC)\) theo một giao tuyến. Thiết diện của \((P)\) và hình chóp là
Quảng cáo
Trả lời:
Chọn B
Có MN // BC nên MN // (SBC)
Do đó (P) cắt (SBC) theo giao tuyến PQ song song MN.
Vậy thiết diện là hình thang MNPQ.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cách 1:

Gọi \(F\) là trung điểm của \(SD\).\(EF\) là đường trung bình của tam giác \(SCD\).
Suy ra \(EF//CD\) và \(EF = \frac{1}{2}CD\).
Mà \(AB//CD\) và \(AB = \frac{1}{2}CD\). Do đó, \(EF//AB\) và \(EF = AB\) hay \(ABEF\) là hình bình hành.
Suy ra \(BE//AF\). Mà \(AF \subset (SAD)\). Vậy \(BE//(SAD)\).
Lời giải

Ta có: \(BC \subset (BCD);N \in (\alpha ) \cap (BCD)\); \((\alpha )//BC\).
Suy ra \((\alpha ) \cap (BCD) = Nx\), vói \(Nx//BC\).
Trong mặt phẳng \((BCD)\), gọi \(P\) là giao điểm của \(Nx\) và \(BD\).
Suy ra \(NP = (\alpha ) \cap (BCD)\).
Ta có \(BC \subset (ABC);M \in (\alpha ) \cap (ABC)\);\((\alpha )//BC\).
Suy ra \((\alpha ) \cap (ABC) = My\) với \(My//BC\).
Trong mặt phẳng \((ABC)\), gọi \(Q\) là giao điểm của \(My\) và \(AC\).
Suy ra \(MQ = (\alpha ) \cap (ABC)\).
Từ đó, dễ thấy: \((\alpha ) \cap (ABD) = MP;(\alpha ) \cap (ACD) = QN\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.