Cho tứ diện \(ABCD\). Giả sử \(M\) thuộc đoạn thẳng \(BC\). Mặt phẳng \((\alpha )\) qua \(M\) song song với \(AB\) và \(CD\). Khi đó:
a) Giao tuyến của mặt phẳng \((\alpha )\) với mặt phẳng \((ABC)\) là đường thẳng đi qua \(M\) và song song với \(AB\)
b) Giao tuyến của mặt phẳng \((\alpha )\) với mặt phẳng \((BCD)\) là đường thẳng đi qua \(M\) và song song với \(CD\)
c) Giao tuyến của mặt phẳng \((\alpha )\) với mặt phẳng \((ABD)\) là đường thẳng đi qua \(N\) và song song với \(AB\)
d) Hình tạo bởi các giao tuyến của mặt phẳng \((\alpha )\) với các mặt của tứ diện (ta gọi là thiết diện) là hình thang
Cho tứ diện \(ABCD\). Giả sử \(M\) thuộc đoạn thẳng \(BC\). Mặt phẳng \((\alpha )\) qua \(M\) song song với \(AB\) và \(CD\). Khi đó:
a) Giao tuyến của mặt phẳng \((\alpha )\) với mặt phẳng \((ABC)\) là đường thẳng đi qua \(M\) và song song với \(AB\)
b) Giao tuyến của mặt phẳng \((\alpha )\) với mặt phẳng \((BCD)\) là đường thẳng đi qua \(M\) và song song với \(CD\)
c) Giao tuyến của mặt phẳng \((\alpha )\) với mặt phẳng \((ABD)\) là đường thẳng đi qua \(N\) và song song với \(AB\)
d) Hình tạo bởi các giao tuyến của mặt phẳng \((\alpha )\) với các mặt của tứ diện (ta gọi là thiết diện) là hình thang
Quảng cáo
Trả lời:
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
Vì \((\alpha )//AB\) nên giao tuyến của mặt phẳng \((\alpha )\) với mặt phẳng \((ABC)\) là đường thẳng đi qua \(M\) và song song với \(AB\) và cắt \(AC\) tại \(Q\).
Vì \((\alpha )//CD\) nên giao tuyến của mặt phẳng \((\alpha )\) với mặt phẳng \((BCD)\) là đường thẳng đi qua \(M\) và song song với \(CD\) và cắt \(BD\) tại \(N\).
Vì \((\alpha )//AB\) nên giao tuyến của mặt phẳng \((\alpha )\).với mặt phẳng \((ABD)\) là đường thẳng đi qua \(N\) và song song với \(AB\) và cắt \(AD\) tại \(P\).
Ta có \(MN//PQ//CD,MQ//PN//AB\).
Vậy hình tạo bởi các giao tuyến của mặt phẳng \((\alpha )\) với các mặt của tứ diện (ta gọi là thiết diện) là hình bình hành \(MNPQ\).

Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D

Trong \(\left( {SAB} \right)\), kẻ đường thẳng qua \(M\) song song với \(SA\) cắt \(SB\) tại \(F\).
Trong \(\left( {SBC} \right)\), kẻ đường thẳng qua \(F\) song song với \(BC\) cắt \(SC\) tại \(E\).
Trong \(\left( {ABCD} \right)\), kẻ đường thẳng qua \(M\) song song với \(BC\) cắt \(CD\) tại \(N\).
Suy ra thiết diện của hình chóp \(S.ABCD\)cắt bởi mặt phẳng \(\left( P \right)\) là hình thang \(FENM\) vì có \(FE\;{\rm{//}}\;MN\) (cùng song song với \(BC\)).
Lời giải
|
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |

a) b) c) Tứ giác \(MNPQ\) là hình gì?
\(\begin{array}{l}{\rm{ Ta co\`u : }}\left\{ {\begin{array}{*{20}{l}}{MN = (\alpha ) \cap (ABCD)}\\{CD//(\alpha )}\\{CD \subset (ABCD)}\end{array} \Rightarrow (\alpha ) \cap (ABCD) = MN//CD} \right.{\rm{.(1) }}\\{\rm{ T\"o \^o ng t\"o \"i : }}\left\{ {\begin{array}{*{20}{l}}{MQ = (\alpha ) \cap (SAD)}\\{SA//(\alpha )}\\{SA \subset (SAD)}\end{array} \Rightarrow (\alpha ) \cap (SAD) = MQ//SA} \right.{\rm{; }}\\\left\{ {\begin{array}{*{20}{l}}{PQ = (\alpha ) \cap (SCD)}\\{CD//(\alpha )}\\{CD \subset (SCD)}\end{array} \Rightarrow (\alpha ) \cap (SCD) = PQ//CD} \right.(2)\\\end{array}\)
Từ (1) và (2) suy ra tứ giác \(MNPQ\) là hình thang có hai đáy là \(MN\) và \(PQ\).
d) Xét \((SAD) \cap (SBC)\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{S \in (SAD) \cap (SBC)}\\{AD//BC}\\{AD \subset (SAD),BC \subset (SBC)}\end{array} \Rightarrow (SAD) \cap (SBC) = Sx} \right.\)
(với \(Sx\) qua \(S\) và \(Sx//AD//BC\)).
\({\rm{ V\`i }}\left\{ {\begin{array}{*{20}{l}}{I \in NP,NP \subset (SBC)}\\{I \in MQ,MQ \subset (SAD)}\end{array} \Rightarrow I \in (SAD) \cap (SBC)} \right.{\rm{. }}\)
Suy ra \(I \in Sx\) (với \(Sx\) cố định).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang, đáy lớn \(AB\). Gọi \(P,Q\) lần lượt là hai điểm nằm trên cạnh \(SA\) và \(SB\) sao cho \(\frac{{SP}}{{SA}} = \frac{{SQ}}{{SB}} = \frac{1}{3}\). Mệnh đề nào sau đây là đúng?
a) \(PQ\) cắt \(\left( {ABCD} \right)\).
b) \(PQ \subset \left( {ABCD} \right)\).
c) \(PQ//\left( {ABCD} \right)\).
d) \(PQ\) và \(CD\) chéo nhau.
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang, đáy lớn \(AB\). Gọi \(P,Q\) lần lượt là hai điểm nằm trên cạnh \(SA\) và \(SB\) sao cho \(\frac{{SP}}{{SA}} = \frac{{SQ}}{{SB}} = \frac{1}{3}\). Mệnh đề nào sau đây là đúng?
a) \(PQ\) cắt \(\left( {ABCD} \right)\).
b) \(PQ \subset \left( {ABCD} \right)\).
c) \(PQ//\left( {ABCD} \right)\).
d) \(PQ\) và \(CD\) chéo nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.