Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(2,M\) là một điểm thuộc cạnh \(SA\) sao cho \(\frac{{SM}}{{SA}} = \frac{2}{3}\). Một mặt phẳng \((\alpha )\) đi qua \(M\) song song với \(AB\) và \(AD\), cắt các mặt của hình chóp theo hình là một tứ giác. Khi đó:
a) Giao tuyến của mặt phẳng \((\alpha )\) với mặt phẳng \((SAB)\) là đường thẳng đi qua \(M\) và song song với \(AB\)
b) Giao tuyến của mặt phẳng \((\alpha )\) với mặt phẳng \((SAD)\) là đường thẳng đi qua \(M\) và song song với \(SD\)
c) \(\frac{{SM}}{{SA}} = \frac{1}{3}\)
d) Mặt phẳng \((\alpha )\) đi qua \(M\) song song với \(AB\) và \(AD\), cắt các mặt của hình chóp theo hình là một tứ giác có diện tích bằng \(\frac{{16}}{9}\)
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(2,M\) là một điểm thuộc cạnh \(SA\) sao cho \(\frac{{SM}}{{SA}} = \frac{2}{3}\). Một mặt phẳng \((\alpha )\) đi qua \(M\) song song với \(AB\) và \(AD\), cắt các mặt của hình chóp theo hình là một tứ giác. Khi đó:
a) Giao tuyến của mặt phẳng \((\alpha )\) với mặt phẳng \((SAB)\) là đường thẳng đi qua \(M\) và song song với \(AB\)
b) Giao tuyến của mặt phẳng \((\alpha )\) với mặt phẳng \((SAD)\) là đường thẳng đi qua \(M\) và song song với \(SD\)
c) \(\frac{{SM}}{{SA}} = \frac{1}{3}\)
d) Mặt phẳng \((\alpha )\) đi qua \(M\) song song với \(AB\) và \(AD\), cắt các mặt của hình chóp theo hình là một tứ giác có diện tích bằng \(\frac{{16}}{9}\)
Quảng cáo
Trả lời:

a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
\(\begin{array}{l}{\rm{V\`i }}\left\{ {\begin{array}{*{20}{l}}{M \in (SAB) \cap (\alpha )}\\{(\alpha )//AB,AB \subset (SAB)}\end{array} \Rightarrow (SAB) \cap (\alpha ) = MN{\rm{ v\^o \`u i }}MN//AB,N \in SB;} \right.\\\left\{ {\begin{array}{*{20}{l}}{M \in (SAD) \cap (\alpha )}\\{(\alpha )//AD,AD \subset (SAD)}\end{array} \Rightarrow (SAD) \cap (\alpha ) = MQ{\rm{ v\^o \`u i }}MQ//AD,Q \in SD.} \right.\end{array}\)
Vì \(BC//AD//MQ\) và \(BC\not \subset (\alpha ),MQ \subset (\alpha )\) nên \(BC//(\alpha )\).
Khi đó, ta có: \(\left\{ {\begin{array}{*{20}{l}}{N \in (SBC) \cap (\alpha )}\\{(\alpha )//BC,BC \subset (SBC)}\end{array} \Rightarrow (SBC) \cap (\alpha ) = NP} \right.\) (với \(NP//BC,P \in SC\)).
Nối các đỉnh \(M,N,P,Q\) ta được một tứ giác.
Ta có: \(MN//AB,MQ//AD,NP//BC,PQ//CD\) nên theo định lí Thalès, ta có:
\(\frac{{SM}}{{SA}} = \frac{{SN}}{{SB}} = \frac{{SP}}{{SC}} = \frac{{SQ}}{{SD}} = \frac{{MN}}{{AB}} = \frac{{NP}}{{BC}} = \frac{{PQ}}{{CD}} = \frac{{MQ}}{{AD}} = \frac{2}{3}{\rm{. }}\)
Suy ra \(MN = NP = PQ = MQ = \frac{2}{3} \cdot 2 = \frac{4}{3}\) (đáy hình của chóp là hình vuông cạnh 2).
Dễ thấy \(MNPQ\) là một hình vuông có cạnh bằng \(\frac{4}{3}\) nên có diện tích bằng \(\frac{{16}}{9}\) (đơn vị diện tích).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(M\) là trung điểm của \(B'C'\). \({G_1}\) là trọng tâm \(\Delta A'B'C'\) nên ta có : \(\frac{{A'{G_1}}}{{A'M}} = \frac{2}{3}\) \(\left( 1 \right)\).
\({G_2}\) là trọng tâm \(\Delta ABB'\) nên \(\frac{{B{G_2}}}{{\frac{1}{2}A'B}} = \frac{2}{3}\) \( \Rightarrow \frac{{B{G_2}}}{{A'B}} = \frac{1}{3}\)\( \Rightarrow \frac{{A'{G_2}}}{{A'B}} = \frac{2}{3}\) \(\left( 2 \right)\).
Từ \(\left( 1 \right)\), \(\left( 2 \right)\) ta có : \(\frac{{A'{G_1}}}{{A'M}} = \frac{{A'{G_2}}}{{A'B}}\)\( \Rightarrow {G_1}{G_2}{\rm{//}}BM\), \(BM \subset \left( {BCC'B'} \right)\)\( \Rightarrow {G_1}{G_2}{\rm{//}}\left( {BCC'B'} \right)\).
Lời giải
Dựng \(O = DM \cap AB\), mà \(AB//CD\) nên theo định lý Talet có \(\frac{{AO}}{{DC}} = \frac{{AM}}{{MC}} = \frac{1}{2}\)\( \Rightarrow AO = \frac{1}{2}AB\), hay \(O\) là trung điểm của \(AB\).
Dựng \(O' = EN \cap AB\), mà \[AB{\rm{//}}EF\] nên theo định lý Talet có \(\frac{{BO}}{{EF}} = \frac{{BN}}{{NF}} = \frac{1}{2}\)\( \Rightarrow BO' = \frac{1}{2}AB\), hay \(O'\) là trung điểm của \(AB\).
Từ hai điều trên ta có \(O \equiv O'\). Vậy suy ra \(\frac{{OM}}{{MD}} = \frac{1}{2} = \frac{{ON}}{{NE}}\)\[ \Rightarrow MN{\rm{//}}DE\]\( \Rightarrow MN{\rm{//}}\left( {DCEF} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.