Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Lấy điểm \(M\) trên cạnh \(AD\) sao cho \(AD = 3AM\). Gọi \(G,N\) theo thứ tự là trọng tâm các tam giác \(SAB,ABC\). Khi đó:
a) Giao tuyến của hai mặt phẳng \((SAB)\) và \((SCD)\) là đường thẳng đi qua \(S\) và song song với \(AC,BD\)
b) \[\frac{{DN}}{{DB}} = \frac{1}{3}\]
c) \(MN\) song song với mặt phẳng \((SCD)\)
d)\(NG\) cắt với mặt phẳng \((SAC)\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Lấy điểm \(M\) trên cạnh \(AD\) sao cho \(AD = 3AM\). Gọi \(G,N\) theo thứ tự là trọng tâm các tam giác \(SAB,ABC\). Khi đó:
a) Giao tuyến của hai mặt phẳng \((SAB)\) và \((SCD)\) là đường thẳng đi qua \(S\) và song song với \(AC,BD\)
b) \[\frac{{DN}}{{DB}} = \frac{1}{3}\]
c) \(MN\) song song với mặt phẳng \((SCD)\)
d)\(NG\) cắt với mặt phẳng \((SAC)\).
Quảng cáo
Trả lời:
\({\rm{ a) Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{S \in (SAB) \cap (SCD)}\\{AB//CD}\\{AB \subset (SAB),CD \subset (SCD)}\end{array} \Rightarrow (SAB) \cap (SCD) = Sx} \right.\)
(với \(Sx\) qua \(S\) và \(Sx//AB//CD\)).

c) Chứng minh \(MN\) song song với mặt phẳng \((SCD)\):
Gọi \(O\) là tâm hình bình hành \(ABCD\).
Vì \(N\) là trọng tâm của \(\Delta ABC\) nên \(BN = \frac{2}{3}BO = \frac{2}{3} \cdot \frac{1}{2}BD = \frac{1}{3}BD \Rightarrow \frac{{DN}}{{DB}} = \frac{2}{3}\).
Mặt khác, ta có: \(AD = 3AM \Rightarrow \frac{{DM}}{{DA}} = \frac{2}{3}\).
Xét tam giác \(ADB\), ta có: \(\frac{{DM}}{{DA}} = \frac{{DN}}{{DB}} = \frac{2}{3}\) nên \(MN//AB \Rightarrow MN//CD\),
mà \(CD \subset (SCD) \Rightarrow MN//(SCD)\).
d) Chứng minh \(NG\) song song \((SAC)\) :
Gọi \(P\) là trung điểm \(AB\). Tam giác \(SPC\) có:
\(\frac{{PG}}{{PS}} = \frac{{PN}}{{PC}} = \frac{1}{3}\) (tính chất trọng tâm)
\( \Rightarrow NG//SC,SC \subset (SAC) \Rightarrow NG//(SAC)\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi \(N\) là trung điểm của \(AD\). Ta có \(MG \subset (SMN)\).
Trong mặt phẳng \((ABCD)\), gọi \(E = MN \cap BC\).
Ta có \(S \in (SNM) \cap (SBC)\);\(E \in MN\) và \(MN \subset (SMN)\);\(E \in BC\) và \(BC \subset (SBC)\).
Suy ra \((SMN) \cap (SBC) = SE\).
Dễ thấy \(\Delta MND{\mathop{\rm cs}\nolimits} \Delta MEC\), suy ra \(\frac{{MN}}{{ME}} = \frac{{MD}}{{MC}} = \frac{1}{2}\), suy ra \(\frac{{MN}}{{NE}} = \frac{1}{3}\).(1)
Mặt khác, \(\frac{{GN}}{{SN}} = \frac{1}{3}\) (\(G\) là trọng tâm của tam giác \(\left. {SAD} \right)\). (2)
Từ (1) và (2) suy ra \(\frac{{GN}}{{SN}} = \frac{{MN}}{{NE}}\).
Theo định lí Thalès đảo trong tam giác \(SNE\), ta có \(MG//SE\).
Mà \(SE \subset (SBC)\) nên \(MG//(SBC)\).
Lời giải
|
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |

a) Ta có
Tương tự, .
b) Vì \(\frac{{DI}}{{DA}} = \frac{1}{2} \ne \frac{1}{3} = \frac{{DE}}{{DC}}\) nên \(IE\) không song song với \(AC\). Trong hình chữ nhật \(ABCD\), gọi \(P = IE \cap BC\)
\( \Rightarrow P = IE \cap (SBC)\).
Gọi \(K\) là trung điểm của \(BC,{G^\prime }\) là trọng tâm tam giác \(SBC\).
Khi đó \(\frac{{S{G^\prime }}}{{SK}} = \frac{{SG}}{{SI}} = \frac{{{G^\prime }G}}{{KI}} = \frac{2}{3}\), suy ra và \( \Rightarrow {G^\prime }G = \frac{2}{3}KI = \frac{2}{3}CD = CE\).
Do dó tứ giác \({G^\prime }GEC\) là hình bình hành, suy ra .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.