Quảng cáo
Trả lời:

Vì \(MN\) là đường trung bình của tam giác \(ABD\) nên \(MN//BD\), mà \(MN \subset (CMN)\) nên \(BD//(CMN)\). Vì \(PQ\) là đường trung bình của tam giác \(BCD\) nên \(PQ//BD\), mà \(PQ \subset (APQ)\) nên \(BD//(APQ)\).
Trong mặt phẳng \((ABC)\), gọi \(I\) là giao điểm của \(AP\) và \(MC\); trong mặt phẳng \((ACD)\), gọi \(J\) là giao điểm của \(AQ\) và \(NC\). Khi đó, \(IJ\) là giao tuyến của hai mặt phẳng \((APQ)\) và \((CMN)\). Mà \(BD//(CMN)\) và \(BD//(APQ)\) nên \[IJ//BD\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(M\) là trung điểm của \(B'C'\). \({G_1}\) là trọng tâm \(\Delta A'B'C'\) nên ta có : \(\frac{{A'{G_1}}}{{A'M}} = \frac{2}{3}\) \(\left( 1 \right)\).
\({G_2}\) là trọng tâm \(\Delta ABB'\) nên \(\frac{{B{G_2}}}{{\frac{1}{2}A'B}} = \frac{2}{3}\) \( \Rightarrow \frac{{B{G_2}}}{{A'B}} = \frac{1}{3}\)\( \Rightarrow \frac{{A'{G_2}}}{{A'B}} = \frac{2}{3}\) \(\left( 2 \right)\).
Từ \(\left( 1 \right)\), \(\left( 2 \right)\) ta có : \(\frac{{A'{G_1}}}{{A'M}} = \frac{{A'{G_2}}}{{A'B}}\)\( \Rightarrow {G_1}{G_2}{\rm{//}}BM\), \(BM \subset \left( {BCC'B'} \right)\)\( \Rightarrow {G_1}{G_2}{\rm{//}}\left( {BCC'B'} \right)\).
Lời giải
Dựng \(O = DM \cap AB\), mà \(AB//CD\) nên theo định lý Talet có \(\frac{{AO}}{{DC}} = \frac{{AM}}{{MC}} = \frac{1}{2}\)\( \Rightarrow AO = \frac{1}{2}AB\), hay \(O\) là trung điểm của \(AB\).
Dựng \(O' = EN \cap AB\), mà \[AB{\rm{//}}EF\] nên theo định lý Talet có \(\frac{{BO}}{{EF}} = \frac{{BN}}{{NF}} = \frac{1}{2}\)\( \Rightarrow BO' = \frac{1}{2}AB\), hay \(O'\) là trung điểm của \(AB\).
Từ hai điều trên ta có \(O \equiv O'\). Vậy suy ra \(\frac{{OM}}{{MD}} = \frac{1}{2} = \frac{{ON}}{{NE}}\)\[ \Rightarrow MN{\rm{//}}DE\]\( \Rightarrow MN{\rm{//}}\left( {DCEF} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.