Câu hỏi:

06/10/2025 9 Lưu

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Cho tứ diện \(ABCD\). Gọi \(M,N,P,Q\) lần lượt là trung điểm của các cạnh \(AB,AD\), \(BC,CD\). Chứng minh rằng giao tuyến của hai mặt phẳng \((APQ)\)\((CMN)\) song song với đường thẳng \(BD\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tứ diện \(ABCD\). Gọi \(M,N,P,Q\) lần lượt là trung điểm của các cạnh \(AB,AD\), \(BC,CD\). Chứng minh rằng giao tuyến của hai mặt phẳng \((APQ)\) và \((CMN)\) song song với đường thẳng \(BD\). (ảnh 1)

\(MN\) là đường trung bình của tam giác \(ABD\) nên \(MN//BD\), mà \(MN \subset (CMN)\) nên \(BD//(CMN)\). Vì \(PQ\) là đường trung bình của tam giác \(BCD\) nên \(PQ//BD\), mà \(PQ \subset (APQ)\) nên \(BD//(APQ)\).

Trong mặt phẳng \((ABC)\), gọi \(I\) là giao điểm của \(AP\)\(MC\); trong mặt phẳng \((ACD)\), gọi \(J\) là giao điểm của \(AQ\)\(NC\). Khi đó, \(IJ\) là giao tuyến của hai mặt phẳng \((APQ)\)\((CMN)\). Mà \(BD//(CMN)\)\(BD//(APQ)\) nên \[IJ//BD\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình lăng trụ \(ABC.A'B'C'\). \({G_1},{G_2}\) lần lượt là trọng tâm các tam giác \(A'B'C'\) và \(ABB'\). Chứng minh rằng \({G_1}{G_2}{\rm{//}}\left( {BCC'B'} \right)\). (ảnh 1)

Gọi \(M\) là trung điểm của \(B'C'\). \({G_1}\) là trọng tâm \(\Delta A'B'C'\) nên ta có : \(\frac{{A'{G_1}}}{{A'M}} = \frac{2}{3}\) \(\left( 1 \right)\).

\({G_2}\) là trọng tâm \(\Delta ABB'\) nên \(\frac{{B{G_2}}}{{\frac{1}{2}A'B}} = \frac{2}{3}\) \( \Rightarrow \frac{{B{G_2}}}{{A'B}} = \frac{1}{3}\)\( \Rightarrow \frac{{A'{G_2}}}{{A'B}} = \frac{2}{3}\) \(\left( 2 \right)\).

Từ \(\left( 1 \right)\), \(\left( 2 \right)\) ta có : \(\frac{{A'{G_1}}}{{A'M}} = \frac{{A'{G_2}}}{{A'B}}\)\( \Rightarrow {G_1}{G_2}{\rm{//}}BM\), \(BM \subset \left( {BCC'B'} \right)\)\( \Rightarrow {G_1}{G_2}{\rm{//}}\left( {BCC'B'} \right)\).

Lời giải

Cho hai hình bình hành \(ABCD\), \(ABEF\) không đồng phẳng. \(M \in AC\), \(N \in BF\) để \(\frac{{AM}}{{AC}} = \frac{{BN}}{{BF}} = \frac{1}{3}\). Chứng minh \(MN{\rm{//}}\left( {CDEF} \right)\). (ảnh 1)

Dựng \(O = DM \cap AB\), mà \(AB//CD\) nên theo định lý Talet có \(\frac{{AO}}{{DC}} = \frac{{AM}}{{MC}} = \frac{1}{2}\)\( \Rightarrow AO = \frac{1}{2}AB\), hay \(O\) là trung điểm của \(AB\).

Dựng \(O' = EN \cap AB\), mà \[AB{\rm{//}}EF\] nên theo định lý Talet có \(\frac{{BO}}{{EF}} = \frac{{BN}}{{NF}} = \frac{1}{2}\)\( \Rightarrow BO' = \frac{1}{2}AB\), hay \(O'\) là trung điểm của \(AB\).

Từ hai điều trên ta có \(O \equiv O'\). Vậy suy ra \(\frac{{OM}}{{MD}} = \frac{1}{2} = \frac{{ON}}{{NE}}\)\[ \Rightarrow MN{\rm{//}}DE\]\( \Rightarrow MN{\rm{//}}\left( {DCEF} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP