Cho hình lăng trụ \(ABC \cdot {A^\prime }{B^\prime }{C^\prime };I\) và \({I^\prime }\) lần lượt là trung điểm của đoạn \(AB\) và \({A^\prime }{B^\prime }\).
a) \(A{I^\prime }//I{B^\prime }\)
b) Hình chiếu song song của \(I\) trên mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }} \right)\) phương \({A^\prime }I\) là điểm \({C^\prime }\).
c) Trong mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }} \right)\), vẽ hình bình hành \({A^\prime }{C^\prime }M{I^\prime }\). Suy ra \(ACM{I^\prime }\) là hình bình hành.
d) \(M\)là hình chiếu song song của \(C\) theo phương \(A{I^\prime }\) trên mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }} \right)\).
Cho hình lăng trụ \(ABC \cdot {A^\prime }{B^\prime }{C^\prime };I\) và \({I^\prime }\) lần lượt là trung điểm của đoạn \(AB\) và \({A^\prime }{B^\prime }\).
a) \(A{I^\prime }//I{B^\prime }\)
b) Hình chiếu song song của \(I\) trên mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }} \right)\) phương \({A^\prime }I\) là điểm \({C^\prime }\).
c) Trong mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }} \right)\), vẽ hình bình hành \({A^\prime }{C^\prime }M{I^\prime }\). Suy ra \(ACM{I^\prime }\) là hình bình hành.
d) \(M\)là hình chiếu song song của \(C\) theo phương \(A{I^\prime }\) trên mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }} \right)\).
Câu hỏi trong đề: Đề kiểm tra Phép chiếu song song (có lời giải) !!
Quảng cáo
Trả lời:

a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Ta có \(\left\{ {\begin{array}{*{20}{l}}{AI//{B^\prime }{I^\prime }}\\{AI = {B^\prime }{I^\prime } = \frac{{AB}}{2}}\end{array} \Rightarrow AI{B^\prime }{I^\prime }} \right.\) là hình bình hành, do đó \(A{I^\prime }//I{B^\prime }\).
Vậy hình chiếu song song của \(I\) trên mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }} \right)\) phương \({A^\prime }I\) là điểm \({B^\prime }\). Trong mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }} \right)\), vẽ hình bình hành \({A^\prime }{C^\prime }M{I^\prime }\).
Vì \(\left\{ {\begin{array}{*{20}{l}}{M{I^\prime }//{A^\prime }{C^\prime },M{I^\prime } = {A^\prime }{C^\prime }}\\{{A^\prime }{C^\prime }//AC,{A^\prime }{C^\prime } = AC}\end{array} \Rightarrow M{I^\prime }//AC,M{I^\prime } = AC} \right.\).
Suy ra \(ACM{I^\prime }\) là hình bình hành.
Vì vậy \(A{I^\prime }//CM\), mà \(M \in \left( {{A^\prime }{B^\prime }{C^\prime }} \right)\) nên \(M\) chính là hình chiếu song song của \(C\) theo phương \(A{I^\prime }\) trên mặt phẳng \(\left( {{A^\prime }{B^\prime }{C^\prime }} \right)\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Phép chiếu song song lên mặt phẳng \[\left( P \right)\] theo phương \[AD\] biến hai đường thẳng song song\[AB,\,CD\] thành hai đường thẳng trùng nhau.
Câu 2
Lời giải
Chọn B
Gọi \[A',\,B',\,C'\] lần lượt là hình chiếu của \[A,\,B,\,C\] lên mặt phẳng \[\left( P \right)\] theo phương \[l\]. Khi đó \[AA'{\rm{//}}BB'{\rm{//}}CC'{\rm{//}}l\] và \[AA' = BB' = CC'\] (vì \[\left( {ABC} \right){\rm{//}}\left( P \right)\]).
Suy ra \[AB = A'B',\,BC = B'C',\,\,AC = A'C'\].
Vậy \[\Delta A'B'C' = \Delta ABC\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.