Chứng minh rằng hình chiếu song song của một hình thang là một hình thang \((H.4.61)\).

Chứng minh rằng hình chiếu song song của một hình thang là một hình thang \((H.4.61)\).
Câu hỏi trong đề: Đề kiểm tra Phép chiếu song song (có lời giải) !!
Quảng cáo
Trả lời:

Hình thang \(ABCD\) có \(AB\parallel CD,{A^\prime }{B^\prime }{C^\prime }{D^\prime }\) là hình chiếu song song của \(ABCD\) trên mặt phẳng \((P)\) theo phương \(d\) (Hình 4.61).
Vì \(ABCD\) là hình thang có \(AB//CD\), do đó hình chiếu của \(AB\) là song song với hình chiếu của \(CD\) là
Tứ giác có nên nó là hình thang.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn D
Gọi \[l\] là phương chiếu, \[\left( \alpha \right)\] và \[\left( \beta \right)\] là các mặt phẳng song song với \[l\] và lần lượt đi qua \[a\] và \[b\]. Khi đó nếu \[\left( \alpha \right)\] và \[\left( \beta \right)\] cắt nhau thì \[a'\] và \[b'\] căt nhau, nếu \[\left( \alpha \right)\] và \[\left( \beta \right)\] song song thì \[a'\] và \[b'\] song song.
Câu 2
Lời giải
Chọn C
Nếu \[a'{\rm{//}}b'\] thì \[mp\left( {a,a'} \right){\rm{//}}mp\left( {b,b'} \right)\]. Bởi vậy a và b có thể chéo nhau hoặc song song với nhau.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.