Câu hỏi:

06/10/2025 131 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi \(M\) là trung điểm của cạnh \(SD\). Đường thẳng \(SB\) song song với mặt phẳng

A. \(\left( {CDM} \right)\).                       
B. \(\left( {ACM} \right)\).       
C. \(\left( {ADM} \right)\).                     
D. \(\left( {ACD} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lăng trụ \(ABC.A'B'C'\). \(M,N\) là trung điểm của \(A'C',BC\). Chứng minh \(MN\;{\rm{//}}\;\left( {ABB'A'} \right)\) (ảnh 1)

Trong \(\Delta ABC\): Gọi \(O\) là trung điểm của \(AB\);

Khi đó \(ON\) là đường trung bình \( \Rightarrow ON\;{\rm{//}}\; = \frac{1}{2}AC\) (1)

\[ACC'A'\] là hình bình hành \( \Rightarrow AC\;{\rm{//}}\; = A'C' \Rightarrow A'M\;{\rm{//}}\; = \frac{1}{2}AC\) (2)

\(ON\;{\rm{//}}\; = A'M \Rightarrow \) Từ giác \(A'ONM\) là hình bình hành

\( \Rightarrow \left\{ \begin{array}{l}MN\;{\rm{//}}\;A'O\\A'O \subset \left( {ABB'A'} \right)\end{array} \right. \Rightarrow MN\;{\rm{//}}\;\left( {ABB'A'} \right)\).

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Sai

Do \(CG\)\(HE\) không cùng nằm trong một mặt phẳng nên hai đường thẳng này chéo nhau.

Câu 3

A. Lục giác.               
B. Ngũ giác.            
C. Tứ giác.                           
D. Tam giác.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[3\].                      
B. \[4\].                   
C. \[5\].                           
D. \[6\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP