Câu hỏi:

06/10/2025 5 Lưu

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {x + 4} - 2}}{x} & {\rm{khi }}x > 0\\mx + m + \frac{1}{4} & {\rm{khi }}x \le 0\end{array} \right.\), \[m\] là tham số. Tìm giá trị của \[m\] để hàm số có giới hạn tại \[x = 0\].

A. \(m = \frac{1}{2}\).                              
B. \(m = 1\).                             
C. \(m = 0\).            
D. \(m = - \frac{1}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Ta có:

\(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {x + 4}  - 2}}{x}\)\( = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\left( {x + 4} \right) - {2^2}}}{{x\left( {\sqrt {x + 4}  + 2} \right)}}\)\( = \mathop {\lim }\limits_{x \to {0^ + }} \frac{x}{{x\left( {\sqrt {x + 4}  + 2} \right)}}\)\( = \mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{\sqrt {x + 4}  + 2}} = \frac{1}{4}\).

\(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {mx + m + \frac{1}{4}} \right) = m + \frac{1}{4}\)

Hàm số đã cho có giới hạn tại \(x = 0\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)\)

\( \Rightarrow F = \left( { - \frac{5}{2}; - 2;0} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Ta có: \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 2{\rm{x}} + 3}}{{x + 1}} = \frac{{{1^2} - 2.1 + 3}}{{1 + 1}} = 1\).

Câu 2

A. \(5\).                     
B. \(6\).                    
C. \(11\).                         
D. \(9\).

Lời giải

Chọn D

Ta có \(\mathop {\lim }\limits_{x \to 3} \left[ {f\left( x \right) + 4x - 1} \right] = 9\).

Câu 3

A. \(4\).                      
B. \(1\).                   
C. \(2\).                           
D. \(3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \( - 5\).                  
B. \(1\).                    
C. \(5\).                           
D. \( - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(0\).                      
B. \(\frac{2}{\pi }\).                             
C. \(\frac{\pi }{2}\).                       
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\]\[\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\].                     
B. \[\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\]\[\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\].
C. \[\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\]\[\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\].                     
D. \[\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\]\[\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP