Câu hỏi:

06/10/2025 43 Lưu

Chứng minh rằng phương trình \[\left( {{m^2} + 1} \right){x^3} - 2{m^2}{x^2} - 4x + {m^2} + 1 = 0\] luôn có 3 nghiệm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đặt \[f\left( x \right) = \left( {{m^2} + 1} \right){x^3} - 2{m^2}{x^2} - 4x + {m^2} + 1\].

Hàm số \[f\left( x \right) = \left( {{m^2} + 1} \right){x^3} - 2{m^2}{x^2} - 4x + {m^2} + 1\] liên tục trên \[\mathbb{R}\].

Ta có: \[f\left( x \right) = {m^2}\left( {{x^3} - 2{x^2} + 1} \right) + {x^3} - 4x + 1\]

\[f\left( { - 3} \right) = - 44{m^2} - 14 < 0;\,\,\forall m\]

\[f\left( 0 \right) = {m^2} + 1 > 0,\forall m\,\]

\[f\left( 1 \right) = - 2\]

\[f\left( 2 \right) = {m^2} + 1 > 0\,;\,\,\forall m\]

\[f\left( { - 3} \right).\,f\left( 0 \right) < 0\] nên phương trình có ít nhất 1 nghiệm thuộc khoảng \[\left( { - 3;0} \right)\].

\[f\left( 0 \right).\,f\left( 1 \right) < 0\] nên phương trình có ít nhất 1 nghiệm thuộc khoảng \[\left( {0;1} \right)\].

\[f\left( 1 \right).\,f\left( 2 \right) < 0\] nên phương trình có ít nhất 1 nghiệm thuộc khoảng \[\left( {1;2} \right)\].

Vậy phương trình \[\left( {{m^2} + 1} \right){x^3} - 2{m^2}{x^2} - 4x + {m^2} + 1 = 0\] có ít nhất 3 nghiệm trong khoảng \[\left( { - 3;2} \right)\], mà phương trình đã cho là bậc 3 nên phương trình có đúng 3 nghiệm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \( - \infty \).           
B. \(4\).                    
C. \( + \infty \).                               
D. \(0\).

Lời giải

Chọn C

Ta có: + \(\mathop {\lim }\limits_{x \to  - 1} {\mkern 1mu} f(x) = 4 > 0\).

+ \(\mathop {\lim }\limits_{x \to  - 1} {\mkern 1mu} {\left( {x + 1} \right)^4} = 0\) và với \(\forall x \ne  - 1\) thì \({\left( {x + 1} \right)^4} > 0\).

Suy ra \(\mathop {\lim }\limits_{x \to  - 1} {\mkern 1mu} \frac{{f(x)}}{{{{\left( {x + 1} \right)}^4}}} =  + \infty \).

Câu 2

A. \[ - 1 \le a \le 2\].   
B. \[a < - 1\].           
C. \[a \ge 5\].                             
D. \[2 < a < 5\].

Lời giải

Chọn D

Ta có\(\mathop {\lim }\limits_{x \to  + \infty } \frac{{ax + \sqrt {{x^2} - 3x + 5} }}{{2x - 7}} = 2\)\( \Leftrightarrow \mathop {\lim }\limits_{x \to  + \infty } \frac{{a + \sqrt {1 - \frac{3}{x} + \frac{5}{{{x^2}}}} }}{{2 - \frac{7}{x}}} = 2\)\( \Leftrightarrow \frac{{a + 1}}{2} = 2\)\( \Leftrightarrow \frac{{a + 1}}{2} = 3\).

\( \Leftrightarrow a + 1 = 6 \Leftrightarrow a = 5\)

Câu 5

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Tìm được các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to + \infty } \left( {{x^2} + 3} \right) = + \infty \);

b) \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + x} - x} \right) = - \infty \);

c) \(\mathop {\lim }\limits_{x \to - \infty } \frac{1}{{x + 2}} = 0\);

d) \(\mathop {\lim }\limits_{x \to + \infty } \sqrt {\frac{{2x}}{{x + 3}}} = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \( - \frac{1}{{2a}}\).                             
B. \(0\).                           
C. \( + \infty \).       
D. \( - \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \( - \infty \).           
B. \(3\).                    
C. \(\frac{7}{2}\).          
D. \( - \infty \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP