Câu hỏi:

06/10/2025 30 Lưu

Cho bốn hàm số \({f_1}\left( x \right) = 2{x^3} - 3x + 1\), \({f_2}\left( x \right) = \frac{{3x + 1}}{{x - 2}}\), \({f_3}\left( x \right) = \cos x + 3\)\({f_4}\left( x \right) = {\log _3}x\). Hỏi có bao nhiêu hàm số liên tục trên tập \(\mathbb{R}\)?

A. \[1\].                      
B. \[3\].                    
C. \[4\].                           
D. \[2\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

* Ta có hai hàm số \({f_2}\left( x \right) = \frac{{3x + 1}}{{x - 2}}\) và \({f_4}\left( x \right) = {\log _3}x\) có tập xác định không phải là tập \(\mathbb{R}\) nên không thỏa yêu cầu.

* Cả hai hàm số \({f_1}\left( x \right) = 2{x^3} - 3x + 1\) và \({f_3}\left( x \right) = \cos x + 3\) đều có tập xác định là \(\mathbb{R}\) đồng thời liên tục trên \(\mathbb{R}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(a = 0\).                
B. \(a = - \frac{1}{2}\).            
C. \(a = \frac{1}{2}\).            
D. \(a = 1\).

Lời giải

Chọn C

Ta có \[\mathop {\lim }\limits_{x \to 1} f\left( x \right)\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x  - 1}}{{x - 1}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x  - 1}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt x  + 1}}\]\[ = \frac{1}{2}\].

Để hàm số liên tục tại \[{x_0} = 1\] khi \[\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\]\( \Leftrightarrow a = \frac{1}{2}\).

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Sai

 

Ta có: \(f\left( {{x_0}} \right) = f(1) = 1 + 1 = 2\).

\( \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (x + 1) = 2 = f\left( {{x_0}} \right){\rm{. }}\)

Vậy hàm số liên tục tại điểm \({x_0} = 1\).

Ta có: \(g\left( {{x_0}} \right) = g(1) = 4\).

\(\mathop {\lim }\limits_{x \to {x_0}} g(x) = \mathop {\lim }\limits_{x \to 1} \left( {4{x^2} - x + 1} \right) = 4 = g(1)\)

Vậy hàm số liên tục tại điểm \({x_0} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP