Câu hỏi:

06/10/2025 27 Lưu

Cho hàm số \[y = f(x) = \left\{ \begin{array}{l}\frac{{{x^3} - 1}}{{x - 1}}{\rm{ khi }}x \ne 1\\2m + 1{\rm{ khi }}x = 1\end{array} \right.\]. Giá trị của tham số \[m\] để hàm số liên tục tại điểm \[{x_0} = 1\] là:

A. \(m = - \frac{1}{2}\).                           
B. \(m = 2\).                             
C. \(m = 1\).            
D. \(m = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có \[f(1) = 2m + 1\]

\[\mathop {\lim }\limits_{x \to 1} y = \mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} ({x^2} + x + 1) = 3\]

Để hàm số liên tục tại điểm \[{x_0} = 1\]thì \[f(1) = \mathop {\lim }\limits_{x \to 1} y \Rightarrow 2m + 1 = 3 \Leftrightarrow m = 1\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(a = 0\).                
B. \(a = - \frac{1}{2}\).            
C. \(a = \frac{1}{2}\).            
D. \(a = 1\).

Lời giải

Chọn C

Ta có \[\mathop {\lim }\limits_{x \to 1} f\left( x \right)\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x  - 1}}{{x - 1}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x  - 1}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt x  + 1}}\]\[ = \frac{1}{2}\].

Để hàm số liên tục tại \[{x_0} = 1\] khi \[\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\]\( \Leftrightarrow a = \frac{1}{2}\).

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Sai

 

Ta có: \(f\left( {{x_0}} \right) = f(1) = 1 + 1 = 2\).

\( \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (x + 1) = 2 = f\left( {{x_0}} \right){\rm{. }}\)

Vậy hàm số liên tục tại điểm \({x_0} = 1\).

Ta có: \(g\left( {{x_0}} \right) = g(1) = 4\).

\(\mathop {\lim }\limits_{x \to {x_0}} g(x) = \mathop {\lim }\limits_{x \to 1} \left( {4{x^2} - x + 1} \right) = 4 = g(1)\)

Vậy hàm số liên tục tại điểm \({x_0} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP