Câu hỏi:

06/10/2025 5 Lưu

Để hàm số \(y = \left\{ \begin{array}{l}{x^2} + 3x + 2\begin{array}{*{20}{c}}{}&{{\rm{khi}}\begin{array}{*{20}{c}}{}&{x \le - 1}\end{array}}\end{array}\\4x + a\begin{array}{*{20}{c}}{}&{}&{\,\,{\rm{khi}}\begin{array}{*{20}{c}}{}&{x > - 1}\end{array}}\end{array}\end{array} \right.\) liên tục tại điểm \(x = - 1\) thì giá trị của \(a\)

A. \( - 4\).                  
B. 4.                         
C. 1.                               
D. \( - 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Hàm số liên tục tại \(x =  - 1\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to  - {1^ + }} y = \mathop {\lim }\limits_{x \to  - {1^ - }} y =  = y\left( { - 1} \right)\)

\( \Leftrightarrow \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {4x + a} \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {{x^2} + 3x + 2} \right) = y\left( { - 1} \right)\) \( \Leftrightarrow a - 4 = 0 \Leftrightarrow a = 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng

b) Sai

c) Sai

d) Đúng

 

Ta có: \(f\left( {{x_0}} \right) = f( - 2) = 0 = \mathop {\lim }\limits_{x \to - {2^ - }} f(x)\).

\(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = \mathop {\lim }\limits_{x \to - {2^ + }} \frac{{1 - \sqrt {5x + 11} }}{{2{x^2} - 5x - 18}} = \frac{5}{{26}} \ne \mathop {\lim }\limits_{x \to - {2^ - }} f(x)\). \( \Rightarrow \) Không tồn tại \(\mathop {\lim }\limits_{x \to - 2} f(x)\).

Vậy hàm số gián đoạn tại điểm \({x_0} = - 2\).

Ta có: \(g\left( {{x_0}} \right) = g( - 2) = - 4 + a\).

\(\mathop {\lim }\limits_{x \to {x_0}} g(x) = \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - x - 6}}{{x + 2}} = - 5\).

Để hàm số liên tục tại điểm \({x_0} = - 2\) thì \(\mathop {\lim }\limits_{x \to - 2} g(x) = g( - 2)\).

\( \Rightarrow - 4 + a = - 5 \Leftrightarrow a = - 1.{\rm{ }}\)

Lời giải

a) Đúng

b) Đúng

c) Sai

d) Đúng

 

Chọn C

Hàm số \(f\left( x \right) = 2{x^3} - 8x - 1\) liên tục trên \(\mathbb{R}\).

Do \(f\left( { - 5} \right) = - 211,\,\)\(f\left( { - 1} \right) = 5 > 0,\,\)\(f\left( 2 \right) = - 1 < 0,\,\)\(f\left( 3 \right) = 29 > 0\) nên phương trình có ít nhất \(3\) nghiệm trên \(\left( { - 5; - 1} \right),\,\left( { - 1;2} \right),\,\left( {2;3} \right)\). Mà phương trình bậc ba có tối đa \(3\) nghiệm nên phương trình có đúng \(3\) nghiệm trên \(\mathbb{R}\). Do đó C sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP