Câu hỏi:

06/10/2025 33 Lưu

Tìm tất cả các giá trị của tham số \[m\] để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 2x}}{{x - 2}}{\rm{ khi x > 2 }}\\mx - 4{\rm{ khi x}} \le {\rm{2}}\end{array} \right.\)liên tục tại \[x = 2\].

A. \[m = 3\].              
B. \(m = 2\).            
C. \[m = - 2\].                             
D. Không tồn tại \[m\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có \[\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 2x}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{x\left( {x - 2} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} x = 2\].

\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {mx - 4} \right) = 2m - 4\)

Hàm số liên tục tại \[x = 2\] khi \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) \Leftrightarrow 2m - 4 = 2 \Leftrightarrow m = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(a = 0\).                
B. \(a = - \frac{1}{2}\).            
C. \(a = \frac{1}{2}\).            
D. \(a = 1\).

Lời giải

Chọn C

Ta có \[\mathop {\lim }\limits_{x \to 1} f\left( x \right)\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x  - 1}}{{x - 1}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x  - 1}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt x  + 1}}\]\[ = \frac{1}{2}\].

Để hàm số liên tục tại \[{x_0} = 1\] khi \[\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\]\( \Leftrightarrow a = \frac{1}{2}\).

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Sai

 

Ta có: \(f\left( {{x_0}} \right) = f(1) = 1 + 1 = 2\).

\( \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (x + 1) = 2 = f\left( {{x_0}} \right){\rm{. }}\)

Vậy hàm số liên tục tại điểm \({x_0} = 1\).

Ta có: \(g\left( {{x_0}} \right) = g(1) = 4\).

\(\mathop {\lim }\limits_{x \to {x_0}} g(x) = \mathop {\lim }\limits_{x \to 1} \left( {4{x^2} - x + 1} \right) = 4 = g(1)\)

Vậy hàm số liên tục tại điểm \({x_0} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP