Câu hỏi:

06/10/2025 34 Lưu

Phần 3. Câu hỏi trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

 Tìm tham số \(m\) để hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{\frac{{{x^2} - 1}}{{x - 1}}}&{{\rm{ n\~O u }}x < 1}\\{mx + 1}&{{\rm{ n\~O u }}x \ge 1}\end{array}} \right.\) liên tục trên \(\mathbb{R}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(f(1) = m + 1 = \mathop {\lim }\limits_{x \to {1^ + }} f(x),\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = 2\).

Vậy hàm số liên tục tại \(x = 1\) khi và chỉ khi \(m = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(a = 0\).                
B. \(a = - \frac{1}{2}\).            
C. \(a = \frac{1}{2}\).            
D. \(a = 1\).

Lời giải

Chọn C

Ta có \[\mathop {\lim }\limits_{x \to 1} f\left( x \right)\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x  - 1}}{{x - 1}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x  - 1}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}}\]\[ = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt x  + 1}}\]\[ = \frac{1}{2}\].

Để hàm số liên tục tại \[{x_0} = 1\] khi \[\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\]\( \Leftrightarrow a = \frac{1}{2}\).

Lời giải

a) Đúng

b) Đúng

c) Đúng

d) Sai

 

Ta có: \(f\left( {{x_0}} \right) = f(1) = 1 + 1 = 2\).

\( \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} (x + 1) = 2 = f\left( {{x_0}} \right){\rm{. }}\)

Vậy hàm số liên tục tại điểm \({x_0} = 1\).

Ta có: \(g\left( {{x_0}} \right) = g(1) = 4\).

\(\mathop {\lim }\limits_{x \to {x_0}} g(x) = \mathop {\lim }\limits_{x \to 1} \left( {4{x^2} - x + 1} \right) = 4 = g(1)\)

Vậy hàm số liên tục tại điểm \({x_0} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP