Câu hỏi:

06/10/2025 3 Lưu

Tìm tất cả các giá trị của \(m\) để hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\frac{{\sqrt {1 - x} - \sqrt {1 + x} }}{x}}&{{\rm{khi}}}&{x < 0}\\{m + \frac{{1 - x}}{{1 + x}}}&{{\rm{khi}}}&{x \ge 0}\end{array}} \right.\) liên tục tại \(x = 0\).

A. \[m = 1\].              
B. \[m = - 2\].         
C. \[m = - 1\].                             
D. \[m = 0\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có

\[\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {m + \frac{{1 - x}}{{1 + x}}} \right) = m + 1\].

\[\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {\frac{{\sqrt {1 - x}  - \sqrt {1 + x} }}{x}} \right) = \]\[\mathop {\lim }\limits_{x \to {0^ - }} \frac{{ - 2x}}{{x\left( {\sqrt {1 - x}  + \sqrt {1 + x} } \right)}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{ - 2}}{{\left( {\sqrt {1 - x}  + \sqrt {1 + x} } \right)}} =  - 1\].

\[f\left( 0 \right) = m + 1\]

Để hàm liên tục tại \(x = 0\) thì \[\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = f\left( 0 \right)\]\( \Leftrightarrow m + 1 =  - 1 \Rightarrow m =  - 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(m = 1\).              
B. \(m = 2\).            
C. \(m = 3\).                             
D. \(m = 0\).

Lời giải

Chọn B

Ta có: \(f\left( 3 \right) = m\).

\(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \frac{{{x^3} - 6{x^2} + 11x - 6}}{{x - 3}}\)\( = \mathop {\lim }\limits_{x \to 3} \left( {{x^2} - 3x + 2} \right) = 2\).

Câu 2

A. \(m = 3.\)              
B. \(m = 1.\)            
C. \(m = 2.\)                             
D. \(m = 0.\)

Lời giải

Chọn A

Ta có: \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - x - 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{(x - 2)(x + 1)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} (x + 1) = 3.\)

Hàm số liên tục tại x=2 \( \Leftrightarrow \mathop {\lim }\limits_{x \to 2} f(x) = f(2) \Leftrightarrow m = 3.\)

Câu 3

A. \[m \ne 2.\]            
B. \[m \ne 1.\]          
C. \[m \ne 2.\]                             
D. \[m \ne 3.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(m = - 2\).           
B. \(m = 2\).             
C. \(m = - 1\).                             
D. \(m = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP