Câu hỏi:

06/10/2025 3 Lưu

Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho các hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{\sqrt {4x - 7} - 1}}{{{x^2} - 4}} & {\rm{khi}}\,x > 2\\\frac{{5x - 9}}{2} & & {\rm{khi}}\,x \le 2\end{array} \right.\)\(g(x) = \left\{ {\begin{array}{*{20}{l}}{\frac{{\sqrt {x + 2} - 2}}{{2 - x}}}&{{\rm{ khi }}x > 2}\\{\frac{{1 - x}}{4}}&{{\rm{ khi }}x \le 2}\end{array}} \right.\).

Khi đó:

a) Hàm số \(f\left( x \right)\) liên tục tại điểm \({x_0} = 2\).

b) Hàm số \(g\left( x \right)\) gián đoạn tại điểm \({x_0} = 2\).

c) Giới hạn\(\mathop {\lim }\limits_{x \to {2^ + }} g(x) = \frac{1}{4}{\rm{. }}\)

d) Hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục tại điểm \({x_0} = 2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Sai

d) Đúng

 

Ta có: \(f\left( {{x_0}} \right) = f(2) = \frac{1}{2} = \mathop {\lim }\limits_{x \to {2^ - }} f(x)\).

\(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{\sqrt {4x - 7} - 1}}{{{x^2} - 4}} = \frac{1}{2} = \mathop {\lim }\limits_{x \to {2^ - }} f(x)\).

\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \frac{1}{2} = \mathop {\lim }\limits_{x \to 2} f(x) = f(2)\).

Vậy hàm số \(f\left( x \right)\)liên tục tại điểm \({x_0} = 2\).

Ta có: \(g(2) = \frac{{1 - 2}}{4} = - \frac{1}{4};\mathop {\lim }\limits_{x \to {2^ - }} g(x) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\frac{{1 - x}}{4}} \right) = - \frac{1}{4}\);

\(\mathop {\lim }\limits_{x \to {2^ + }} g(x) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {\frac{{\sqrt {x + 2} - 2}}{{2 - x}}} \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{x + 2 - 4}}{{(2 - x)(\sqrt {x + 2} + 2)}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{ - 1}}{{\sqrt {x + 2} + 2}} = - \frac{1}{4}{\rm{. }}\)

Suy ra \(\mathop {\lim }\limits_{x \to 2} g(x) = - \frac{1}{4} = g(2)\).

Vậy hàm số \(g(x)\) liên tục tại điểm \({x_0} = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(m = 1\).              
B. \(m = 2\).            
C. \(m = 3\).                             
D. \(m = 0\).

Lời giải

Chọn B

Ta có: \(f\left( 3 \right) = m\).

\(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \frac{{{x^3} - 6{x^2} + 11x - 6}}{{x - 3}}\)\( = \mathop {\lim }\limits_{x \to 3} \left( {{x^2} - 3x + 2} \right) = 2\).

Câu 2

A. \(m = 3.\)              
B. \(m = 1.\)            
C. \(m = 2.\)                             
D. \(m = 0.\)

Lời giải

Chọn A

Ta có: \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - x - 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{(x - 2)(x + 1)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} (x + 1) = 3.\)

Hàm số liên tục tại x=2 \( \Leftrightarrow \mathop {\lim }\limits_{x \to 2} f(x) = f(2) \Leftrightarrow m = 3.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[m \ne 2.\]            
B. \[m \ne 1.\]          
C. \[m \ne 2.\]                             
D. \[m \ne 3.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(m = - 2\).           
B. \(m = 2\).             
C. \(m = - 1\).                             
D. \(m = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(m = 2\).              
B. \(m = 0\).             
C. \[m = - 4\].                             
D. \(m = 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP