Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho các hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{\sqrt {4x - 7} - 1}}{{{x^2} - 4}} & {\rm{khi}}\,x > 2\\\frac{{5x - 9}}{2} & & {\rm{khi}}\,x \le 2\end{array} \right.\) và \(g(x) = \left\{ {\begin{array}{*{20}{l}}{\frac{{\sqrt {x + 2} - 2}}{{2 - x}}}&{{\rm{ khi }}x > 2}\\{\frac{{1 - x}}{4}}&{{\rm{ khi }}x \le 2}\end{array}} \right.\).
Khi đó:
a) Hàm số \(f\left( x \right)\) liên tục tại điểm \({x_0} = 2\).
b) Hàm số \(g\left( x \right)\) gián đoạn tại điểm \({x_0} = 2\).
c) Giới hạn\(\mathop {\lim }\limits_{x \to {2^ + }} g(x) = \frac{1}{4}{\rm{. }}\)
d) Hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục tại điểm \({x_0} = 2\).
Phần 2. Trắc nghiệm lựa chọn đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho các hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{\sqrt {4x - 7} - 1}}{{{x^2} - 4}} & {\rm{khi}}\,x > 2\\\frac{{5x - 9}}{2} & & {\rm{khi}}\,x \le 2\end{array} \right.\) và \(g(x) = \left\{ {\begin{array}{*{20}{l}}{\frac{{\sqrt {x + 2} - 2}}{{2 - x}}}&{{\rm{ khi }}x > 2}\\{\frac{{1 - x}}{4}}&{{\rm{ khi }}x \le 2}\end{array}} \right.\).
Khi đó:
a) Hàm số \(f\left( x \right)\) liên tục tại điểm \({x_0} = 2\).
b) Hàm số \(g\left( x \right)\) gián đoạn tại điểm \({x_0} = 2\).
c) Giới hạn\(\mathop {\lim }\limits_{x \to {2^ + }} g(x) = \frac{1}{4}{\rm{. }}\)
d) Hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục tại điểm \({x_0} = 2\).
Câu hỏi trong đề: Đề kiểm tra Hàm số liên tục (có lời giải) !!
Quảng cáo
Trả lời:

a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Ta có: \(f\left( {{x_0}} \right) = f(2) = \frac{1}{2} = \mathop {\lim }\limits_{x \to {2^ - }} f(x)\).
\(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{\sqrt {4x - 7} - 1}}{{{x^2} - 4}} = \frac{1}{2} = \mathop {\lim }\limits_{x \to {2^ - }} f(x)\).
\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \frac{1}{2} = \mathop {\lim }\limits_{x \to 2} f(x) = f(2)\).
Vậy hàm số \(f\left( x \right)\)liên tục tại điểm \({x_0} = 2\).
Ta có: \(g(2) = \frac{{1 - 2}}{4} = - \frac{1}{4};\mathop {\lim }\limits_{x \to {2^ - }} g(x) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\frac{{1 - x}}{4}} \right) = - \frac{1}{4}\);
\(\mathop {\lim }\limits_{x \to {2^ + }} g(x) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {\frac{{\sqrt {x + 2} - 2}}{{2 - x}}} \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{x + 2 - 4}}{{(2 - x)(\sqrt {x + 2} + 2)}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{ - 1}}{{\sqrt {x + 2} + 2}} = - \frac{1}{4}{\rm{. }}\)
Suy ra \(\mathop {\lim }\limits_{x \to 2} g(x) = - \frac{1}{4} = g(2)\).
Vậy hàm số \(g(x)\) liên tục tại điểm \({x_0} = 2\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Ta có: \(f\left( 3 \right) = m\).
\(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = \mathop {\lim }\limits_{x \to 3} \frac{{{x^3} - 6{x^2} + 11x - 6}}{{x - 3}}\)\( = \mathop {\lim }\limits_{x \to 3} \left( {{x^2} - 3x + 2} \right) = 2\).
Câu 2
Lời giải
Chọn A
Ta có: \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - x - 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{(x - 2)(x + 1)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} (x + 1) = 3.\)
Hàm số liên tục tại x=2 \( \Leftrightarrow \mathop {\lim }\limits_{x \to 2} f(x) = f(2) \Leftrightarrow m = 3.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.