Câu hỏi:

07/10/2025 49 Lưu

Cho dãy số \(\left( {{u_n}} \right)\) với \[{u_n} = \frac{{4{n^2} + n + 2}}{{a{n^2} + 5}}.\]

a) Để dãy số đã cho có giới hạn bằng \(2\), giá trị của \(a = 2.\)

b) Để dãy số đã cho có giới hạn bằng \(1\), giá trị của \(a = 3.\)

c) Để dãy số đã cho có giới hạn bằng \(3\), giá trị của \(a = 4\)

d) Để dãy số đã cho có giới hạn bằng \( - 2\), giá trị của \(a = - 2\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Sai

c) Sai

d) Đúng

 

\(2 = \lim {u_n} = \lim \frac{{4{n^2} + n + 2}}{{a{n^2} + 5}} = \lim \frac{{4 + \frac{1}{n} + \frac{2}{{{n^2}}}}}{{a + \frac{5}{{{n^2}}}}} = \frac{4}{a}\,\,\left( {a\not = 0} \right)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai

b) Đúng

c) Sai

d) Đúng

 

Nếu nhân lượng liên hợp :

Ta có \[\lim \left( {\sqrt {{n^2} - 8n} - n + {a^2}} \right) = \lim \frac{{\left( {2{a^2} - 8} \right)n}}{{\sqrt {{n^2} + n} + n}} = \lim \frac{{2{a^2} - 8}}{{\sqrt {1 + \frac{1}{n}} + 1}}\]

\[ = {a^2} - 4 = 0 \Leftrightarrow a = \pm 2.\]

Lời giải

\(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ + }} x = 1;\,\,\mathop {\lim }\limits_{x \to {1^ - }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - {x^2}} \right) = - 1\)

Do \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) \ne \mathop {\lim }\limits_{x \to {1^ - }} f(x)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f(x)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\frac{{ - 1}}{5}\]                               
B. \[\frac{3}{2}\]           
C. \[\frac{5}{9}\]    
D. \[ + \infty \]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \( + \infty \).          
B. \( - \infty \).         
C. \(0\).                           
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP