Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Trong dây chuyền sản xuất sữa chua hiện đại của một nhà máy thực phẩm, từng giọt sữa chua âm thầm chuyển mình dưới tác động của hàng triệu vi khuẩn Lactic, những “nghệ nhân tí hon” kiến tạo vị chua thanh đặc trưng. Mật độ vi khuẩn (số triệu tế bào trên mỗi ml sữa chua) tại thời điểm \(t\) (giờ) được kí hiệu là \(N\left( t \right)\). Ban đầu (\(t = 0\) giờ), mật độ vi khuẩn đo được là \(N\left( 0 \right) = 10\) triệu tế bào/ml. Do sự thay đổi về nguồn dinh dưỡng (đường lactose giảm) và độ pH (axit lactic tăng) nên tốc độ thay đổi mật độ vi khuẩn \(N'\left( t \right)\) (đơn vị: triệu tế bào/ ml mỗi giờ) được mô hình hóa bởi công thức \(N'\left( t \right) = 18t - 3{t^2}\) (triệu tế bào/ml mỗi giờ) với \(t\) là thời gian tính bằng giờ (\(0 \le t \le 7\)).
a) \(N'\left( 1 \right) = 15\) triệu tế bào/ml giờ.
b) \(\int {N'\left( t \right){\rm{d}}t} = 9{t^2} - {t^3}\).
c) So với lúc ban đầu (\(t = 0\)), mật độ vi khuẩn đã tăng thêm 108 triệu tế bào/ml khi đến thời điểm \(t = 6\) giờ.
d) Tại thời điểm \(t = 7\) giờ, mật độ vi khuẩn trong 1 ml sữa chua là 108 triệu tế bào/ml.
Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Trong dây chuyền sản xuất sữa chua hiện đại của một nhà máy thực phẩm, từng giọt sữa chua âm thầm chuyển mình dưới tác động của hàng triệu vi khuẩn Lactic, những “nghệ nhân tí hon” kiến tạo vị chua thanh đặc trưng. Mật độ vi khuẩn (số triệu tế bào trên mỗi ml sữa chua) tại thời điểm \(t\) (giờ) được kí hiệu là \(N\left( t \right)\). Ban đầu (\(t = 0\) giờ), mật độ vi khuẩn đo được là \(N\left( 0 \right) = 10\) triệu tế bào/ml. Do sự thay đổi về nguồn dinh dưỡng (đường lactose giảm) và độ pH (axit lactic tăng) nên tốc độ thay đổi mật độ vi khuẩn \(N'\left( t \right)\) (đơn vị: triệu tế bào/ ml mỗi giờ) được mô hình hóa bởi công thức \(N'\left( t \right) = 18t - 3{t^2}\) (triệu tế bào/ml mỗi giờ) với \(t\) là thời gian tính bằng giờ (\(0 \le t \le 7\)).
a) \(N'\left( 1 \right) = 15\) triệu tế bào/ml giờ.
b) \(\int {N'\left( t \right){\rm{d}}t} = 9{t^2} - {t^3}\).
c) So với lúc ban đầu (\(t = 0\)), mật độ vi khuẩn đã tăng thêm 108 triệu tế bào/ml khi đến thời điểm \(t = 6\) giờ.
d) Tại thời điểm \(t = 7\) giờ, mật độ vi khuẩn trong 1 ml sữa chua là 108 triệu tế bào/ml.
Quảng cáo
Trả lời:

a) Đúng. Ta có \(N'\left( 1 \right) = 18.1 - {3.1^2} = 15\) triệu tế bào/ml giờ.
b) Sai. Ta có \(\int {N'\left( t \right){\rm{d}}t} = \int {\left( {18t - 3{t^2}} \right){\rm{d}}t} = 9{t^2} - {t^3} + C\) (\(C \in \mathbb{R}\)).
c) Đúng. Ta có \(N\left( t \right) = 9{t^2} - {t^3} + C\) (\(C \in \mathbb{R}\)).
Mà \(N\left( 0 \right) = 10\) nên \(C = 10\). Vậy \(N\left( t \right) = 9{t^2} - {t^3} + 10\).
Tại thời điểm \(t = 6\), ta có \(N\left( 6 \right) = {9.6^2} - {6^3} + 10 = 118\). Ban đầu (\(t = 0\) giờ), mật độ vi khuẩn đo được là \(N\left( 0 \right) = 10\) triệu tế bào/ml nên tại thời điểm \(t = 6\), mật độ vi khuẩn đã tăng thêm 108 triệu tế bào/ml.
d) Đúng. Tại thời điểm \(t = 7\) giờ, ta có \(N\left( 7 \right) = {9.7^2} - {7^3} + 10 = 108\) nên mật độ vi khuẩn trong 1 ml sữa chua là 108 triệu tế bào/ml.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \({P_A}\left( t \right)\) là số lượng khách hàng luỹ kế của công ty A với \(t\) là số tháng kể từ khi ra mắt sản phẩm (\(t > 0\)).
Ta có \[{P_A}\left( t \right) = \int {f\left( t \right)dt = \int {\left( {2t + 7} \right)} } dt = {t^2} + 7t + C\].
Công ty A bắt đầu với 0 khách hàng nên \({P_A}\left( 0 \right) = 0 \Leftrightarrow {0^2} + 7.0 + C = 0 \Leftrightarrow C = 0\).
Vậy \[{P_A}\left( t \right) = {t^2} + 7t\].
Vì công ty B bắt đầu với 10 nghìn khách hàng đặt trước sản phẩm. Sau đó, họ duy trì một tốc độ thu hút khách hàng mới ổn định là 10 nghìn khách hàng/tháng, nên số lượng khách hàng lũy kế của công ty B sau \(t\) tháng ra mắt sản phẩm là \({P_B}\left( t \right) = 10 + 10t\) (\(t > 0\)).
Ta có \({P_A}\left( t \right) = {P_B}\left( t \right) \Leftrightarrow {t^2} + 7t = 10 + 10t \Leftrightarrow \left[ \begin{array}{l}t = - 10\\t = 5\end{array} \right.\).
Vì \(t > 0\) nên \(t = 5\).
Vậy sau 5 tháng ra mắt, tổng số lượng khách hàng lũy kế của công ty A bằng tổng số lượng khách hàng lũy kế của công ty B (tính cả 10 nghìn khách hàng ban đầu).
Đáp án: 5.
Lời giải
Gắn hệ trục tọa độ \[Oxy\] như hình vẽ.
Khi đó \[A\left( { - \sqrt 3 ;0} \right),B\left( {\sqrt 3 ;0} \right),C\left( {0;3} \right).\]
Parabol đi qua ba điểm \[A\left( { - \sqrt 3 ;0} \right),B\left( {\sqrt 3 ;0} \right),C\left( {0;3} \right)\] nên parabol có phương trình là \[y = - {x^2} + 3.\]
Đường tròn ngoại tiếp tam giác \[ABC\] có tâm \[O\left( {0;1} \right)\] và bán kính \[R = 2\] nên có phương trình là \[{x^2} + {\left( {y - 1} \right)^2} = 4\].
Suy ra \[y = 1 - \sqrt {4 - {x^2}} \] (Phần nằm dưới trục hoành).
Diện tích phần gạch là \[S = \int\limits_{ - \sqrt 3 }^{\sqrt 3 } {\left[ { - {x^2} + 3 - \left( {1 - \sqrt {4 - {x^2}} } \right)} \right]{\rm{d}}x} \].
Do đó diện tích phần không gạch là \[S' = \pi {.2^2} - S \approx 3,18\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right){\rm{.}}\]
Đáp án: 3,18.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.