Câu hỏi:

07/10/2025 17 Lưu

Phần 2. Trắc nghiệm đúng sai

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Trong dây chuyền sản xuất sữa chua hiện đại của một nhà máy thực phẩm, từng giọt sữa chua âm thầm chuyển mình dưới tác động của hàng triệu vi khuẩn Lactic, những “nghệ nhân tí hon” kiến tạo vị chua thanh đặc trưng. Mật độ vi khuẩn (số triệu tế bào trên mỗi ml sữa chua) tại thời điểm \(t\) (giờ) được kí hiệu là \(N\left( t \right)\). Ban đầu (\(t = 0\) giờ), mật độ vi khuẩn đo được là \(N\left( 0 \right) = 10\) triệu tế bào/ml. Do sự thay đổi về nguồn dinh dưỡng (đường lactose giảm) và độ pH (axit lactic tăng) nên tốc độ thay đổi mật độ vi khuẩn \(N'\left( t \right)\) (đơn vị: triệu tế bào/ ml mỗi giờ) được mô hình hóa bởi công thức \(N'\left( t \right) = 18t - 3{t^2}\) (triệu tế bào/ml mỗi giờ) với \(t\) là thời gian tính bằng giờ (\(0 \le t \le 7\)).

a) \(N'\left( 1 \right) = 15\) triệu tế bào/ml giờ.

b) \(\int {N'\left( t \right){\rm{d}}t} = 9{t^2} - {t^3}\).

c) So với lúc ban đầu (\(t = 0\)), mật độ vi khuẩn đã tăng thêm 108 triệu tế bào/ml khi đến thời điểm \(t = 6\) giờ.

d) Tại thời điểm \(t = 7\) giờ, mật độ vi khuẩn trong 1 ml sữa chua là 108 triệu tế bào/ml.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Ta có \(N'\left( 1 \right) = 18.1 - {3.1^2} = 15\) triệu tế bào/ml giờ.

b) Sai. Ta có \(\int {N'\left( t \right){\rm{d}}t}  = \int {\left( {18t - 3{t^2}} \right){\rm{d}}t}  = 9{t^2} - {t^3} + C\) (\(C \in \mathbb{R}\)).

c) Đúng. Ta có \(N\left( t \right) = 9{t^2} - {t^3} + C\) (\(C \in \mathbb{R}\)).

Mà \(N\left( 0 \right) = 10\) nên \(C = 10\).  Vậy \(N\left( t \right) = 9{t^2} - {t^3} + 10\).

Tại thời điểm \(t = 6\), ta có \(N\left( 6 \right) = {9.6^2} - {6^3} + 10 = 118\). Ban đầu (\(t = 0\) giờ), mật độ vi khuẩn đo được là \(N\left( 0 \right) = 10\) triệu tế bào/ml nên tại thời điểm \(t = 6\), mật độ vi khuẩn đã tăng thêm 108 triệu tế bào/ml.

d) Đúng. Tại thời điểm \(t = 7\) giờ, ta có \(N\left( 7 \right) = {9.7^2} - {7^3} + 10 = 108\) nên mật độ vi khuẩn trong 1 ml sữa chua là 108 triệu tế bào/ml.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \({P_A}\left( t \right)\) là số lượng khách hàng luỹ kế của công ty A với \(t\) là số tháng kể từ khi ra mắt sản phẩm (\(t > 0\)).

Ta có \[{P_A}\left( t \right) = \int {f\left( t \right)dt = \int {\left( {2t + 7} \right)} } dt = {t^2} + 7t + C\].

Công ty A bắt đầu với 0 khách hàng nên \({P_A}\left( 0 \right) = 0 \Leftrightarrow {0^2} + 7.0 + C = 0 \Leftrightarrow C = 0\).

Vậy \[{P_A}\left( t \right) = {t^2} + 7t\].

Vì công ty B bắt đầu với 10 nghìn khách hàng đặt trước sản phẩm. Sau đó, họ duy trì một tốc độ thu hút khách hàng mới ổn định là 10 nghìn khách hàng/tháng, nên số lượng khách hàng lũy kế của công ty B sau \(t\) tháng ra mắt sản phẩm là \({P_B}\left( t \right) = 10 + 10t\) (\(t > 0\)).

Ta có \({P_A}\left( t \right) = {P_B}\left( t \right) \Leftrightarrow {t^2} + 7t = 10 + 10t \Leftrightarrow \left[ \begin{array}{l}t =  - 10\\t = 5\end{array} \right.\).

Vì \(t > 0\) nên \(t = 5\).

Vậy sau 5 tháng ra mắt, tổng số lượng khách hàng lũy kế của công ty A bằng tổng số lượng khách hàng lũy kế của công ty B (tính cả 10 nghìn khách hàng ban đầu).

Đáp án: 5.

Lời giải

Một hoa văn hình tròn tâm O, ngoại tiếp tam giác đều ABC có cạnh \[AB = 2\sqrt 3 \,{\rm{cm}}.\] Đường cong qua ba điểm A,B,C là một phần của parabol (xem hình vẽ). (ảnh 2)

Gắn hệ trục tọa độ \[Oxy\] như hình vẽ.

Khi đó \[A\left( { - \sqrt 3 ;0} \right),B\left( {\sqrt 3 ;0} \right),C\left( {0;3} \right).\]

Parabol đi qua ba điểm \[A\left( { - \sqrt 3 ;0} \right),B\left( {\sqrt 3 ;0} \right),C\left( {0;3} \right)\] nên parabol có phương trình là \[y =  - {x^2} + 3.\]

Đường tròn ngoại tiếp tam giác \[ABC\] có tâm \[O\left( {0;1} \right)\] và bán kính \[R = 2\] nên có phương trình là \[{x^2} + {\left( {y - 1} \right)^2} = 4\].

Suy ra \[y = 1 - \sqrt {4 - {x^2}} \] (Phần nằm dưới trục hoành).

Diện tích phần gạch là \[S = \int\limits_{ - \sqrt 3 }^{\sqrt 3 } {\left[ { - {x^2} + 3 - \left( {1 - \sqrt {4 - {x^2}} } \right)} \right]{\rm{d}}x} \].

Do đó diện tích phần không gạch là \[S' = \pi {.2^2} - S \approx 3,18\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right){\rm{.}}\]

Đáp án: 3,18.

Câu 3

Một robot tự hành ở một cảng vận chuyển công nghệ cao bắt đầu di chuyển từ vị trí nghỉ tại điểm A. Robot di chuyển như sau: Trong giai đoạn đầu, robot tăng tốc đều từ vận tốc \(0\,\,\left( {{\rm{m/s}}} \right)\) đến \(10\,\,\left( {{\rm{m/s}}} \right)\) trong thời gian chưa biết \({t_1}\)​ giây theo hàm số vận tốc \({v_1}\left( t \right) = at\) (\(a\) gọi là gia tốc trong giai đoạn này, \(a\,\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\)). Sau đó, robot tiếp tục di chuyển với vận tốc không đổi trong 40 giây. Cuối cùng, robot giảm tốc đều từ \(10\,\,\left( {{\rm{m/s}}} \right)\) và dừng lại đúng tại băng chuyền điểm \(B\) với thời gian \({t_2}\) giây theo hàm vận tốc \({v_2}\left( t \right) = 10 - bt\)(\(b\)gọi là gia tốc trong giai đoạn này, \(b\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\)). Toàn bộ quá trình vận chuyển diễn ra trong tổng thời gian là 70 giây.

Một robot tự hành ở một cảng vận chuyển công nghệ cao bắt đầu di chuyển từ vị trí nghỉ tại điểm A. Robot di chuyển như sau: Trong giai đoạn đầu, robot tăng tốc đều từ vận tốc (ảnh 1)

a) Nếu gia tốc \(a = 0,5\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\), thời gian tăng tốc \({t_1}\) bé hơn \(21\) giây.

b) Nếu gia tốc \(b = 0,8\,\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\), thời gian giảm tốc \({t_2}\) lớn hơn \(13\) giây.

c) \(a + b \le \,\frac{5}{4}\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\).

d) Tổng quãng đường mà robot đã di chuyển từ \(A\) đến \(B\) là \(550\,{\rm{m}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({f_3}\left( x \right) = - \frac{1}{2}\cos 2x\).                                 
B. \({f_4}\left( x \right) = - \frac{1}{4}\cos 2x\).       
C. \({f_2}\left( x \right) = \cos 2x\).                                 
D. \({f_1}\left( x \right) = - \cos 2x\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\int {f\left( x \right)} = {e^x} + 2x + C\].                                                                        
B. \[\int {f\left( x \right){\rm{d}}x} = {e^x} + 2{x^2} + C\].
C. \[\int {f\left( x \right){\rm{d}}x} = {e^x} - {x^2} + C\].                                  
D. \[\int {f\left( x \right){\rm{d}}x} = {e^x} + {x^2} + C\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP