Câu hỏi:

07/10/2025 17 Lưu

Một robot tự hành ở một cảng vận chuyển công nghệ cao bắt đầu di chuyển từ vị trí nghỉ tại điểm A. Robot di chuyển như sau: Trong giai đoạn đầu, robot tăng tốc đều từ vận tốc \(0\,\,\left( {{\rm{m/s}}} \right)\) đến \(10\,\,\left( {{\rm{m/s}}} \right)\) trong thời gian chưa biết \({t_1}\)​ giây theo hàm số vận tốc \({v_1}\left( t \right) = at\) (\(a\) gọi là gia tốc trong giai đoạn này, \(a\,\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\)). Sau đó, robot tiếp tục di chuyển với vận tốc không đổi trong 40 giây. Cuối cùng, robot giảm tốc đều từ \(10\,\,\left( {{\rm{m/s}}} \right)\) và dừng lại đúng tại băng chuyền điểm \(B\) với thời gian \({t_2}\) giây theo hàm vận tốc \({v_2}\left( t \right) = 10 - bt\)(\(b\)gọi là gia tốc trong giai đoạn này, \(b\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\)). Toàn bộ quá trình vận chuyển diễn ra trong tổng thời gian là 70 giây.

Một robot tự hành ở một cảng vận chuyển công nghệ cao bắt đầu di chuyển từ vị trí nghỉ tại điểm A. Robot di chuyển như sau: Trong giai đoạn đầu, robot tăng tốc đều từ vận tốc (ảnh 1)

a) Nếu gia tốc \(a = 0,5\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\), thời gian tăng tốc \({t_1}\) bé hơn \(21\) giây.

b) Nếu gia tốc \(b = 0,8\,\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\), thời gian giảm tốc \({t_2}\) lớn hơn \(13\) giây.

c) \(a + b \le \,\frac{5}{4}\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\).

d) Tổng quãng đường mà robot đã di chuyển từ \(A\) đến \(B\) là \(550\,{\rm{m}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lần tăng tốc đầu tiên xe chuyển động với vận tốc \(v\left( t \right) = a.t\), \(\left( {a > 0} \right)\).

Đến khi xe đạt vận tốc \({\rm{10}}\,{\rm{m/s}}\) thì xe chuyển động hết \({t_1} = \frac{{10}}{a}\,\left( {\rm{s}} \right)\).

Lần giảm tốc, xe chuyển động với vận tốc \({v_2} = 10 - bt\), \(\left( {b > 0} \right)\).

Khi xe dừng lại thì xe chuyển động thêm được \(10 - b{t_2} = 0 \Rightarrow {t_2} = \frac{{10}}{b}\left( {\rm{s}} \right)\).

Tổng thời gian hành trình: \({t_1} + 40 + {t_2} = 70 \Rightarrow \frac{{10}}{a} + \frac{{10}}{b} = 30 \Rightarrow \frac{1}{a} + \frac{1}{b} = 3\).

a) Đúng. Nếu gia tốc \(a = 0,5\,\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\), thời gian tăng tốc \({t_1} = \frac{{10}}{{0,5}} = 20\,\)giây < \(21\) giây.

b) Sai. Nếu gia tốc \(b = 0,8\,\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\), thời gian giảm tốc \({t_2} = \frac{{10}}{{0,8}} = 12,5\) giây < \(13\) giây.

c) Sai. Với \(a > 0,\,\,b > 0\), ta có bất đẳng thức: \(\left( {a + b} \right)\left( {\frac{1}{a} + \frac{1}{b}} \right) \ge 4\,\) mà \(\frac{1}{a} + \frac{1}{b} = 3\)nên \(a + b \ge \frac{4}{3}\).

Do đó \(a + b \le \,\frac{5}{4}\,\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\) là một đáp án sai.

d) Đúng. Quãng đường tăng tốc: \({S_1} = \int\limits_0^{{t_1}} {v\left( t \right){\rm{d}}t = \int\limits_0^{{t_1}} {at{\rm{d}}t} }  = \frac{1}{2}a{\left( {{t_1}} \right)^2} = \frac{1}{2} \cdot \frac{{100}}{a} = \frac{{50}}{a}\,\,\left( {\rm{m}} \right)\) .

Quãng đường giảm tốc: \({S_2} = \int\limits_0^{{t_2}} {\left( {10 - bt} \right){\rm{d}}t}  = 10{t_2} - \frac{1}{2}bt_2^2\).

Ta có \({t_2} = \frac{{10}}{b} \Rightarrow {S_2} = 10 \cdot \frac{{10}}{b} - \frac{1}{2}b{\left( {\frac{{10}}{b}} \right)^2} = \frac{{100}}{b} - \frac{{50}}{b} = \frac{{50}}{b}\,\left( {\rm{m}} \right)\).

Quãng đường chuyển động đều: \(10 \cdot 40 = 400\,{\mkern 1mu} \left( {\rm{m}} \right)\).

Tổng quãng đường:

\[S = {S_1} + 400 + {S_2} = \frac{{50}}{a} + 400{\mkern 1mu}  + \frac{{50}}{b} = 50\left( {\frac{1}{a} + \frac{1}{b}} \right) + 400 = 150 + 400 = 550\,{\mkern 1mu} \left( {\rm{m}} \right).\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \({P_A}\left( t \right)\) là số lượng khách hàng luỹ kế của công ty A với \(t\) là số tháng kể từ khi ra mắt sản phẩm (\(t > 0\)).

Ta có \[{P_A}\left( t \right) = \int {f\left( t \right)dt = \int {\left( {2t + 7} \right)} } dt = {t^2} + 7t + C\].

Công ty A bắt đầu với 0 khách hàng nên \({P_A}\left( 0 \right) = 0 \Leftrightarrow {0^2} + 7.0 + C = 0 \Leftrightarrow C = 0\).

Vậy \[{P_A}\left( t \right) = {t^2} + 7t\].

Vì công ty B bắt đầu với 10 nghìn khách hàng đặt trước sản phẩm. Sau đó, họ duy trì một tốc độ thu hút khách hàng mới ổn định là 10 nghìn khách hàng/tháng, nên số lượng khách hàng lũy kế của công ty B sau \(t\) tháng ra mắt sản phẩm là \({P_B}\left( t \right) = 10 + 10t\) (\(t > 0\)).

Ta có \({P_A}\left( t \right) = {P_B}\left( t \right) \Leftrightarrow {t^2} + 7t = 10 + 10t \Leftrightarrow \left[ \begin{array}{l}t =  - 10\\t = 5\end{array} \right.\).

Vì \(t > 0\) nên \(t = 5\).

Vậy sau 5 tháng ra mắt, tổng số lượng khách hàng lũy kế của công ty A bằng tổng số lượng khách hàng lũy kế của công ty B (tính cả 10 nghìn khách hàng ban đầu).

Đáp án: 5.

Lời giải

Một hoa văn hình tròn tâm O, ngoại tiếp tam giác đều ABC có cạnh \[AB = 2\sqrt 3 \,{\rm{cm}}.\] Đường cong qua ba điểm A,B,C là một phần của parabol (xem hình vẽ). (ảnh 2)

Gắn hệ trục tọa độ \[Oxy\] như hình vẽ.

Khi đó \[A\left( { - \sqrt 3 ;0} \right),B\left( {\sqrt 3 ;0} \right),C\left( {0;3} \right).\]

Parabol đi qua ba điểm \[A\left( { - \sqrt 3 ;0} \right),B\left( {\sqrt 3 ;0} \right),C\left( {0;3} \right)\] nên parabol có phương trình là \[y =  - {x^2} + 3.\]

Đường tròn ngoại tiếp tam giác \[ABC\] có tâm \[O\left( {0;1} \right)\] và bán kính \[R = 2\] nên có phương trình là \[{x^2} + {\left( {y - 1} \right)^2} = 4\].

Suy ra \[y = 1 - \sqrt {4 - {x^2}} \] (Phần nằm dưới trục hoành).

Diện tích phần gạch là \[S = \int\limits_{ - \sqrt 3 }^{\sqrt 3 } {\left[ { - {x^2} + 3 - \left( {1 - \sqrt {4 - {x^2}} } \right)} \right]{\rm{d}}x} \].

Do đó diện tích phần không gạch là \[S' = \pi {.2^2} - S \approx 3,18\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right){\rm{.}}\]

Đáp án: 3,18.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(S = \int\limits_0^7 {( - \sin x + {\rm{cos}}x){\rm{d}}x} \).                                     
B. \[S = \int\limits_0^7 {\left| {{\rm{sin}}x - {\rm{cos}}x} \right|} {\rm{d}}x\]
C. \[S = \int\limits_0^7 {({\rm{sin}}x - {\rm{cos}}x){\rm{d}}x} \].                                  
D. \[S = \int\limits_0^7 {({\rm{sin}}x + {\rm{cos}}x){\rm{d}}x} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP