Dạng 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Một quả cầu lông được đánh lên từ độ cao \[2,2\,{\rm{m}}\] với vận tốc được tính bởi công thức sau đây \[v\left( t \right) = - \,0,8\,t + 4,16\,\,\left( {{\rm{m/s}}} \right)\].
a) Công thức tính độ cao của quả cầu theo \[t\] là \[h\left( t \right) = - \,0,4\,{t^2} + 4,16t + \,2,2\,\left( {\rm{m}} \right)\].
b) Quả cầu đạt độ cao cao nhất tại thời điểm \[t = 5,2\,\left( {\rm{s}} \right)\].
c) Độ cao cao nhất của quả cầu bằng \[13,016\,\,\left( {\rm{m}} \right)\].
d) Thời điểm quả cầu chạm đất là \[t = 10,5\,\,\left( {\rm{s}} \right)\].
Dạng 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Một quả cầu lông được đánh lên từ độ cao \[2,2\,{\rm{m}}\] với vận tốc được tính bởi công thức sau đây \[v\left( t \right) = - \,0,8\,t + 4,16\,\,\left( {{\rm{m/s}}} \right)\].
a) Công thức tính độ cao của quả cầu theo \[t\] là \[h\left( t \right) = - \,0,4\,{t^2} + 4,16t + \,2,2\,\left( {\rm{m}} \right)\].
b) Quả cầu đạt độ cao cao nhất tại thời điểm \[t = 5,2\,\left( {\rm{s}} \right)\].
c) Độ cao cao nhất của quả cầu bằng \[13,016\,\,\left( {\rm{m}} \right)\].
d) Thời điểm quả cầu chạm đất là \[t = 10,5\,\,\left( {\rm{s}} \right)\].
Quảng cáo
Trả lời:
a) Đúng. \[h\left( t \right) = \int {v\left( t \right){\rm{d}}t} = \int {\left( { - 0,8t + 4,16} \right){\rm{d}}t} = - 0,4{t^2} + 4,16t + C\].
Mà \[h\left( 0 \right) = 2,2\] nên \[C = 2,2\] nên \[h\left( t \right) = - 0,4{t^2} + 4,16t + 2,2\,\left( {\rm{m}} \right)\].
b) Đúng. Quả cầu đạt độ cao cao nhất tại thời điểm \[t = - \frac{{4,16}}{{2.\left( { - 0,4} \right)}} = 5,2\,\left( {\rm{s}} \right)\].
c) Đúng. Độ cao cao nhất của quả cầu bằng \[h\left( {5,2} \right) = 13,016\,\,\left( {\rm{m}} \right)\].
d) Sai. Quả cầu chạm đất khi \[h\left( t \right) = 0 \Leftrightarrow - \,0,4\,{t^2} + 4,16t + \,2,2 = 0\, \Leftrightarrow \left[ \begin{array}{l}t \approx 10,9\\t \approx - 0,5\,\end{array} \right.\].
Vì \[t > 0\] nên chọn \[t \approx 10,9\,\left( {\rm{s}} \right)\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Ta có: \(\int {\left( {{t^2} - 8t} \right){\rm{d}}t} = \frac{{{t^3}}}{3} - 4{t^2} + C\).
b) Sai. Ta có: \(f'\left( t \right) > 0\,\,\)khi \(8 < t < 10\) và \(f'\left( t \right) < 0\,\,\)khi \(3 < t < 8\).
Nên số lượng vi sinh vật giảm trong khoảng từ 3 giờ đến 8 giờ, sau đó tăng dần trong khoảng 8 giờ đến 10 giờ.
c) Đúng. Bảng biến thiên của \(f\left( t \right)\):

d) Đúng. \(f\left( t \right) = \frac{{{t^3}}}{3} - 4{t^2} + C\). Do \(f\left( 3 \right) = 50 \Rightarrow \frac{{{3^3}}}{3} - {4.3^2} + C = 50 \Rightarrow C = 77\).
Suy ra \(f\left( t \right) = \frac{1}{3}{t^3} - 4{t^2} + 77 \Rightarrow f\left( 6 \right) = 5\).
Lời giải
Để tính diện tích phần đổ bê tông, ta cần xác định diện tích giữa hai đường cong \(AB\) và \(DC\)
Đường cong DC là kết quả của việc tịnh tiến đường cong \(AB\) lên trên \(2\)m.
Giả sử hàm số của đường cong \(AB\) là \(f\left( x \right)\) thì hàm số của đường cong \(DC\) là \(f\left( x \right) + 2\).
Diện tích hình phẳng giới hạn bởi hai đường cong là: \[S = \int\limits_0^{10} {\left[ {f\left( x \right) + 2 - f\left( x \right)} \right]} {\rm{d}}x = 20\,{{\rm{m}}^2}\].
Lớp bê tông có độ dày là \(15\)cm tức là \(0,15\)m thì có thể tích là: \(20.0,15 = 3{{\rm{m}}^3}\).
Chi phí tổng cộng để đổ bê tông con đường đó là: \(3.1\,080\,000 = 3\,240\,000\) (đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


