Câu hỏi:

07/10/2025 1,433 Lưu

Cô Hạnh đổ bê tông một đường đi trong vườn (phần được tô màu) với kích thước được cho trong hình sau. Biết rằng đường cong AB được cho bởi đồ thị của một hàm số liên tục và đường cong DC nhận được từ đường cong AB bằng cách tịnh tiến theo phương thẳng đứng lên phía trên 2 m. Ngoài ra, cô Hạnh quyết định đổ lớp bê tông dày 15 cm và giá tiền 1 m3 bê tông là 1 080 000 đồng. Tính số tiền cô Hạnh cần dùng để đổ bê tông con đường đó.
Cô Hạnh đổ bê tông một đường đi trong vườn (phần được tô màu) với kích thước được cho trong hình sau. Biết rằng đường cong AB được cho bởi đồ thị của một hàm số liên tục và đường cong DC  (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Để tính diện tích phần đổ bê tông, ta cần xác định diện tích giữa hai đường cong \(AB\) và \(DC\)

Đường cong DC là kết quả của việc tịnh tiến đường cong \(AB\) lên trên \(2\)m.

Giả sử hàm số của đường cong \(AB\) là \(f\left( x \right)\) thì hàm số của đường cong \(DC\) là \(f\left( x \right) + 2\).

Diện tích hình phẳng giới hạn bởi hai đường cong là: \[S = \int\limits_0^{10} {\left[ {f\left( x \right) + 2 - f\left( x \right)} \right]} {\rm{d}}x = 20\,{{\rm{m}}^2}\].

Lớp bê tông có độ dày là \(15\)cm tức là \(0,15\)m thì có thể tích là: \(20.0,15 = 3{{\rm{m}}^3}\).

Chi phí tổng cộng để đổ bê tông con đường đó là: \(3.1\,080\,000 = 3\,240\,000\) (đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Ta có: \(\int {\left( {{t^2} - 8t} \right){\rm{d}}t}  = \frac{{{t^3}}}{3} - 4{t^2} + C\).

b) Sai. Ta có: \(f'\left( t \right) > 0\,\,\)khi \(8 < t < 10\) và \(f'\left( t \right) < 0\,\,\)khi \(3 < t < 8\).

Nên số lượng vi sinh vật giảm trong khoảng từ 3 giờ đến 8 giờ, sau đó tăng dần trong khoảng 8 giờ đến 10 giờ.

c) Đúng. Bảng biến thiên của \(f\left( t \right)\):

Trong thí nghiệm nuôi cấy một loại vi sinh vật, kí hiệu \(f\left( t \right)\) là tổng số lượng vi sinh vật sau \(t\) giờ. Biết rằng sau 3 giờ đầu tiên thì tổng số lượng v (ảnh 1)

d) Đúng. \(f\left( t \right) = \frac{{{t^3}}}{3} - 4{t^2} + C\). Do \(f\left( 3 \right) = 50 \Rightarrow \frac{{{3^3}}}{3} - {4.3^2} + C = 50 \Rightarrow C = 77\).

Suy ra \(f\left( t \right) = \frac{1}{3}{t^3} - 4{t^2} + 77 \Rightarrow f\left( 6 \right) = 5\).

Lời giải

a) Đúng. \[h\left( t \right) = \int {v\left( t \right){\rm{d}}t}  = \int {\left( { - 0,8t + 4,16} \right){\rm{d}}t}  =  - 0,4{t^2} + 4,16t + C\].

Mà \[h\left( 0 \right) = 2,2\] nên \[C = 2,2\] nên \[h\left( t \right) =  - 0,4{t^2} + 4,16t + 2,2\,\left( {\rm{m}} \right)\].

b) Đúng. Quả cầu đạt độ cao cao nhất tại thời điểm \[t =  - \frac{{4,16}}{{2.\left( { - 0,4} \right)}} = 5,2\,\left( {\rm{s}} \right)\].

c) Đúng. Độ cao cao nhất của quả cầu bằng \[h\left( {5,2} \right) = 13,016\,\,\left( {\rm{m}} \right)\].

d) Sai. Quả cầu chạm đất khi \[h\left( t \right) = 0 \Leftrightarrow  - \,0,4\,{t^2} + 4,16t + \,2,2 = 0\, \Leftrightarrow \left[ \begin{array}{l}t \approx 10,9\\t \approx  - 0,5\,\end{array} \right.\].

Vì \[t > 0\] nên chọn \[t \approx 10,9\,\left( {\rm{s}} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP