Câu hỏi:

07/10/2025 10 Lưu

Dạng 2. Trắc nghiệm đúng sai

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Trong không gian với hệ trục tọa độ Oxyz (đơn vị trên mỗi trục là mét), một ngọn hải đăng được đặt ở vị trí \(I\left( {10;\,\,20;\,\,30} \right)\) với bán kính phủ sáng là \(3\)km.

a) Phương trình mặt cầu mô tả ranh giới bên ngoài của vùng phủ sáng trên biển của hải đăng là

\({\left( {x - 10} \right)^2} + {\left( {y - 20} \right)^2} + {\left( {z - 30} \right)^2} = {3000^2}\).

b) Người đi biển ở vị trí \(A\left( {50;20;0} \right)\) nhìn thấy được ánh sáng của ngọn hải đăng.

c) Người đi biển ở vị trí \(B\left( {4030;\,\,50;\,\,40} \right)\) nhìn thấy được ánh sáng của ngọn hải đăng.

d) Nếu hai người đi biển có thể nhìn thấy ánh sáng của ngọn hải đăng thì khoảng cách giữa hai người đó không quá \(6\)km.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Mặt cầu \(\left( S \right)\) tâm \(I\left( {10;\,\,20;\,\,30} \right)\), bán kính \(R = 3\)km = \(3000\)m có phương trình

\({\left( {x - 10} \right)^2} + {\left( {y - 20} \right)^2} + {\left( {z - 30} \right)^2} = {3000^2}\).

b) Đúng. Ta có \(\overrightarrow {IA}  = \left( {40;\,0;\, - 30} \right) \Rightarrow IA = \sqrt {{{40}^2} + {0^2} + {{30}^2}}  = 50\,{\rm{m}} < \,R = 3000\,{\rm{m}}\) nên điểm \(A\) nằm trong mặt cầu \(\left( S \right)\) nên người đi biển ở vị trí \(A\left( {50;20;0} \right)\) nhìn thấy được ánh sáng của ngọn hải đăng.

c) Sai. Ta có \(\overrightarrow {IB}  = \left( {4020;\,30;\,10} \right) \Rightarrow IB = \sqrt {{{4020}^2} + {{30}^2} + {{10}^2}}  \approx 4020,12\,{\rm{m}} > R = 3000\,{\rm{m}}\) nên điểm \(B\) nằm ngoài mặt cầu \(\left( S \right)\) nên người đi biển ở vị trí \(B\left( {4030;\,\,50;\,\,40} \right)\) không nhìn thấy được ánh sáng của ngọn hải đăng.

d) Đúng. Vì bán kính phủ sáng là \(3\)km nên đường kính phủ sáng là \(6\)km nên nếu hai người đi biển có thể nhìn thấy ánh sáng của ngọn hải đăng thì hai người đó nằm trong mặt cầu, do đó khoảng cách giữa hai người đó không quá \(6\)km.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Phương trình mặt cầu \[\left( S \right)\] tâm \[I\left( {1;\,3;\,7} \right)\] bán kính 3 km mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là \[{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 7} \right)^2} = 9\].

b) Đúng. Ta có: \[IA = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {2 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}}  = \sqrt 2  < 3\] nên điểm \[A\] nằm trong mặt cầu. Vì điểm \[A\] nằm trong mặt cầu nên người dùng điện thoại ở vị trí có toạ độ \[A\left( {2;\,2;\,7} \right)\] có thể sử dụng dịch vụ của trạm thu phát sóng đó.

c) Đúng. Ta có: \[IB = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {6 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}}  = 5 > 3\] nên điểm \[B\] nằm ngoài mặt cầu. Vậy người dùng điện thoại ở vị trí có toạ độ \[B\left( {5;\,6;\,7} \right)\] không thể sử dụng dịch vụ của trạm thu phát sóng đó.

d) Đúng. Ta có: \[\overrightarrow {IB} \left( {4;\,3;\,0} \right);\] \[IB = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {6 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}}  = 5 > 3\] nên điểm \[B\] nằm ngoài mặt cầu. Phương trình đường thẳng \[BI\] dạng: \[\left\{ \begin{array}{l}x = 1 + 4t\\y = 3 + 3t\\z = 7\end{array} \right.\].

Gọi mặt cầu \[\left( S \right) \cap BI \equiv E\] suy ra tọa độ \[E\] là nghiệm của hệ

\[\left\{ \begin{array}{l}x = 1 + 4t\\y = 3 + 3t\\z = 7\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 7} \right)^2} = 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}t = \frac{3}{5}\\x = \frac{{17}}{5}\\y = \frac{{24}}{5}\\z = 7\end{array} \right. \Rightarrow E\left( {\frac{{17}}{5};\,\frac{{24}}{5};7} \right) \Rightarrow EB \approx 1,7\\\left\{ \begin{array}{l}t =  - \frac{3}{5}\\x =  - \frac{7}{5}\\y = \frac{6}{5}\\z = 7\end{array} \right. \Rightarrow E\left( { - \frac{7}{5};\,\frac{6}{5};7} \right) \Rightarrow EB = 8\end{array} \right.\]

Vậy khoảng cách lớn nhất để một người ở vị trí có toạ độ \[B\left( {5;\,6;\,7} \right)\] di chuyển được tới vùng phủ sóng theo đơn vị kilômét là \[8\,\]km.

Lời giải

Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).

Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).

Áp dụng bất đẳng thức Minkowski ta có:

\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)

\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).

Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)

Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y >  - 12\).

Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)}  = \sqrt {2.36}  = 6\sqrt 2 \).

Đặt \(t = x + y \Rightarrow  - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}}  = \sqrt {2{t^2} - 104t + {{52}^2}} \).

\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).

Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}}  = \sqrt {2776 - 624\sqrt 2 }  \approx 44\).

Đáp án: 44.