Câu hỏi:

07/10/2025 9 Lưu

Trong không gian với hệ tọa độ Oxyz, một cabin cáp treo xuất phát từ điểm \(A\left( {10;3;0} \right)\) và chuyển động đều theo đường cáp có vectơ chỉ phương là \(\vec u = \left( {2; - 2;1} \right)\) với tốc độ \(4,5\)m/s (đơn vị trên mỗi trục tọa độ là mét).

Trong không gian với hệ tọa độ Oxyz, một cabin cáp treo xuất phát từ điể (ảnh 1)

a) Phương trình tham số của đường cáp là: \(\left\{ \begin{array}{l}x = 10 + 2t\\y = 3 - 2t\\z = t\end{array} \right.\left( {t \in \mathbb{R}} \right)\).

b) Giả sử sau thời gian \(t\)(s) kể từ lúc xuất phát \(\left( {t \ge 0} \right)\) thì cabin đến điểm \(M\). Khi đó tọa độ điểm \(M\) là \(M\left( {3t + 10; - 3t + 3;\frac{{3t}}{2}} \right)\).

c) Cabin dừng ở điểm \(B\) có hoành độ \({x_B} = 550\), khi đó quãng đường \(AB\) dài 800 m.

d) Đường cáp \(AB\) tạo với mặt phẳng \(\left( {Oxy} \right)\) một góc \(30^\circ \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Phương trình tham số của đường cáp là: \(\left\{ \begin{array}{l}x = 10 + 2t\\y = 3 - 2t\\z = t\end{array} \right.\left( {t \in \mathbb{R}} \right)\).

b) Đúng. Ta có \(AM = v.t = 4,5t\) và ta gọi \(M\left( {10 + 2m\,;\,\,3 - 2m\,;\,\,m} \right)\) thuộc đường thẳng \(d\).

Khi đó: \(\overrightarrow {AM}  = \left( {2m;\, - 2m;\,m} \right)\) và \(\overrightarrow {AM} \) cùng hướng với vectơ \(\overrightarrow u \) nên \(m\) dương.

Suy ra \(m = 1,5t\) nên \(M\left( {3t + 10; - 3t + 3;\frac{{3t}}{2}} \right)\).

c) Sai. Từ câu trên suy ra \(M \equiv B \Leftrightarrow 10 + 3t = 550 \Leftrightarrow t = 180\).

Khi đó: \(AB = vt = 4,5.t = 4,5.180 = 810\)mét.

d) Sai. Ta có \(\overrightarrow {{u_{AB}}}  = \left( {2;\, - 2;\,1} \right)\) và mặt phẳng \(\left( {Oxy} \right)\) là \(z = 0\) nên ta có \(\overrightarrow n  = \left( {0\,;\,0;\,1} \right)\).

Từ đó: \(\sin \alpha  = \left| {\frac{{\overrightarrow u .\overrightarrow n }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}}} \right| = \frac{1}{3}\) nên \(\alpha  \ne 30^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Phương trình mặt cầu \[\left( S \right)\] tâm \[I\left( {1;\,3;\,7} \right)\] bán kính 3 km mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là \[{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 7} \right)^2} = 9\].

b) Đúng. Ta có: \[IA = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {2 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}}  = \sqrt 2  < 3\] nên điểm \[A\] nằm trong mặt cầu. Vì điểm \[A\] nằm trong mặt cầu nên người dùng điện thoại ở vị trí có toạ độ \[A\left( {2;\,2;\,7} \right)\] có thể sử dụng dịch vụ của trạm thu phát sóng đó.

c) Đúng. Ta có: \[IB = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {6 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}}  = 5 > 3\] nên điểm \[B\] nằm ngoài mặt cầu. Vậy người dùng điện thoại ở vị trí có toạ độ \[B\left( {5;\,6;\,7} \right)\] không thể sử dụng dịch vụ của trạm thu phát sóng đó.

d) Đúng. Ta có: \[\overrightarrow {IB} \left( {4;\,3;\,0} \right);\] \[IB = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {6 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}}  = 5 > 3\] nên điểm \[B\] nằm ngoài mặt cầu. Phương trình đường thẳng \[BI\] dạng: \[\left\{ \begin{array}{l}x = 1 + 4t\\y = 3 + 3t\\z = 7\end{array} \right.\].

Gọi mặt cầu \[\left( S \right) \cap BI \equiv E\] suy ra tọa độ \[E\] là nghiệm của hệ

\[\left\{ \begin{array}{l}x = 1 + 4t\\y = 3 + 3t\\z = 7\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 7} \right)^2} = 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}t = \frac{3}{5}\\x = \frac{{17}}{5}\\y = \frac{{24}}{5}\\z = 7\end{array} \right. \Rightarrow E\left( {\frac{{17}}{5};\,\frac{{24}}{5};7} \right) \Rightarrow EB \approx 1,7\\\left\{ \begin{array}{l}t =  - \frac{3}{5}\\x =  - \frac{7}{5}\\y = \frac{6}{5}\\z = 7\end{array} \right. \Rightarrow E\left( { - \frac{7}{5};\,\frac{6}{5};7} \right) \Rightarrow EB = 8\end{array} \right.\]

Vậy khoảng cách lớn nhất để một người ở vị trí có toạ độ \[B\left( {5;\,6;\,7} \right)\] di chuyển được tới vùng phủ sóng theo đơn vị kilômét là \[8\,\]km.

Lời giải

Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).

Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).

Áp dụng bất đẳng thức Minkowski ta có:

\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)

\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).

Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)

Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y >  - 12\).

Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)}  = \sqrt {2.36}  = 6\sqrt 2 \).

Đặt \(t = x + y \Rightarrow  - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}}  = \sqrt {2{t^2} - 104t + {{52}^2}} \).

\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).

Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}}  = \sqrt {2776 - 624\sqrt 2 }  \approx 44\).

Đáp án: 44.