Câu hỏi:

07/10/2025 1,213 Lưu

Trong không gian với hệ trục tọa độ Oxyz, có hai trục \(Ox,\;Oy\) đặt trên mặt đất (coi mặt đất là một mặt phẳng); tia \(Oz\) hướng lên phía trên; đơn vị trên các trục tính bằng mét. Một thiết bị phát sóng \(M\)đặt tại điểm  \(A\left( {80;60;60} \right)\).  Vùng phủ sóng của thiết bị \(M\) có bán kính \(500\) mét. Gọi \(d\) là đường thẳng đi qua điểm \(B\left( {0; - 490;0} \right)\) và song song với trục \(Ox.\)

Trong không gian với hệ trục tọa độ Oxyz, có hai trục \(Ox,\;Oy\) đặt (ảnh 1)

a) Một thiết bị thu sóng \(N\)(coi như một điểm) di chuyển trên trục \(Oy\)từ vị trí \(B\) theo hướng của vectơ \(\overrightarrow {BO} \). Thiết bị thu sóng \(N\)phải di chuyển một đoạn đường ngắn nhất bằng \[60,3\]mét thì vào được vùng phủ sóng của thiết bị \[M\].

b) Điểm \[B\] không thuộc vùng phủ sóng của thiết bị \[M\].

c) Một thiết bị thu sóng \(N\)(coi như một điểm) di chuyển trên đường thẳng  \(d\) thì có thể vào được vùng phủ sóng của thiết bị \[M\].

d) Phương trình tham số của đường thẳng  \(d\) là  \[\left\{ \begin{array}{l}x = 0\\y =  - 490\\z = t\end{array} \right.\left( {t \in \mathbb{R}} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phát sóng của thiết bị phát sóng \(M\) trong không gian là mặt cầu \(\left( S \right)\) có tâm \(A\left( {80;60;60} \right)\), bán kính \(500\) có phương trình\({\left( {x - 80} \right)^2} + {\left( {y - 60} \right)^2} + {\left( {z - 60} \right)^2} = {500^2}\).

Gọi \[E\left( {0;t;0} \right)\] là giao điểm của \(Oy\) và \(\left( S \right)\). Khi đó

\[{\left( { - 80} \right)^2} + {\left( {t - 60} \right)^2} + {60^2} = {500^2} \Leftrightarrow {\left( {t - 60} \right)^2} = 240000 \Leftrightarrow \left[ \begin{array}{l}{t_1} = 60 + 200\sqrt 6 \\{t_2} = 60 - 200\sqrt 6 \end{array} \right.\].

Ta có:

\[{t_1} = 60 + 200\sqrt 6  \Rightarrow {E_1}\left( {0;60 + 200\sqrt 6 ;0} \right) \Rightarrow {E_1}B = 550 + 200\sqrt 6  > 60,3\].

\[{t_2} = 60 - 200\sqrt 6  \Rightarrow {E_2}\left( {0;60 - 200\sqrt 6 ;0} \right) \Rightarrow {E_2}B = 550 - 200\sqrt 6  \approx 60,1\].

Thiết bị thu sóng \(N\)phải di chuyển một đoạn đường ngắn nhất bằng \[60,1\]mét thì vào được vùng phủ sóng của thiết bị \[M\].

b) Đúng. Ta có: \(\overrightarrow {AB}  = \left( { - 80\,;\,550\,;\, - 60} \right) \Rightarrow AB = \sqrt {{{\left( { - 80} \right)}^2} + {{550}^2} + {{\left( { - 60} \right)}^2}}  > 500 = R\).

Vậy điểm \[B\] nằm ngoài mặt cầu \(\left( S \right)\) nên điểm \[B\] không thuộc vùng phủ sóng của thiết bị \[M\].

c) Sai. Đường thẳng \[d\] đi qua điểm \(B\left( {0; - 490;0} \right)\) và song song với trục \(Ox\) có VTCP \[\overrightarrow i  = \left( {1;0;0} \right)\] có PTTS là \[\left\{ \begin{array}{l}x = t\\y =  - 490\\z = 0\end{array} \right.\left( {t \in \mathbb{R}} \right)\].

Suy ra: \(\left[ {\overrightarrow i ,\overrightarrow {AB} } \right] = \left( {0\,;\,60\,;\, - 550} \right)\).

Khoảng cách ngắn nhất từ \(A\left( {80;60;60} \right)\) đường thẳng  \(d\) là:

\(d\left( {A;d} \right) = \frac{{\left| {\left[ {\overrightarrow i ,\overrightarrow {AB} } \right]} \right|}}{{\left| {\overrightarrow i } \right|}} = \frac{{\sqrt {{0^2} + {{60}^2} + {{\left( { - 550} \right)}^2}} }}{{\sqrt {{1^2} + {0^2} + {0^2}} }} > 500 = R\).

Vì vậy thiết bị thu sóng \(N\)(coi như một điểm) di chuyển trên đường thẳng  \(d\) thì không thể vào được vùng phủ sóng của thiết bị \[M\].

d) Sai. Đường thẳng \[d\] đi qua điểm \(B\left( {0; - 490;0} \right)\) và song song với trục \(Ox\) có VTCP \[\overrightarrow i  = \left( {1;0;0} \right)\] có PTTS là \[\left\{ \begin{array}{l}x = t\\y =  - 490\\z = 0\end{array} \right.\left( {t \in \mathbb{R}} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).

Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).

Áp dụng bất đẳng thức Minkowski ta có:

\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)

\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).

Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)

Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y >  - 12\).

Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)}  = \sqrt {2.36}  = 6\sqrt 2 \).

Đặt \(t = x + y \Rightarrow  - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}}  = \sqrt {2{t^2} - 104t + {{52}^2}} \).

\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).

Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}}  = \sqrt {2776 - 624\sqrt 2 }  \approx 44\).

Đáp án: 44.

Lời giải

Gọi \(A,B\) là giao điểm của mp \(\left( Q \right)\) với trục \(Ox\) và \(Oy\), \(H\) là hình chiếu vuông góc của \(O\) lên \(AB\).

Manhattanhenge (Hình 1) là một sự kiện diễn ra khi Mặt Trời mọc hoặc khi Mặt Trời lặn nằm thẳng hàng với các tuyến phố Đông - Tây thuộc mạng lưới đường phố chính tại quận Manhattan của thành phố New York. (ảnh 3)

Vì khoảng cách giữa hai mặt phẳng bằng \(30\)m nên \(OH = 30\).

Theo giả thiết ta có góc \(\widehat {OAH} = 38^\circ \) nên khi đó \(OA = \frac{{OH}}{{\sin 38^\circ }} = \frac{{30}}{{\sin 38^\circ }}\).

\({x_H} =  - OH.\cos 52^\circ  =  - 30.\cos 52^\circ \), \({y_H} =  - OH\cos 38^\circ  =  - 30\cos 38^\circ \).

Tọa độ điểm \(A\left( { - \frac{{30}}{{\sin 38^\circ }};\,0\,;\,0} \right)\), \(H\left( { - 30\cos 52^\circ ;\, - 30\cos 38^\circ ;0} \right)\) và chọn một vectơ pháp tuyến là \(\overrightarrow n  = \left( {1;\,\frac{{\cos 38^\circ }}{{\cos 52^\circ }}\,;\,0} \right)\).

Mặt phẳng \(\left( Q \right)\) đi qua \(A\) vuông góc \(OH\) nhận \(\overrightarrow n \) làm véc tơ pháp tuyến có phương trình:

\(\left( {x + \frac{{30}}{{\sin 38^\circ }}} \right) + \frac{{\cos 38^\circ }}{{\cos 52^\circ }}y = 0 \Leftrightarrow x + \frac{{\cos 38^\circ }}{{\cos 52^\circ }}y + \frac{{30}}{{\sin 38^\circ }} = 0\).

Vậy \(m + n = 68\).

Đáp án: 68.

Câu 6

A. \(z + 2 = 0\).               
B. \(z - 2 = 0\).              
C. \(2x - 3y = 0\).                                   
D. \(2x - 3y - 2 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 1 - t\\z = 0\end{array} \right.\).   
B. \(\left\{ \begin{array}{l}x = - 1 + t\\y = 1 - 2t\\z = 0\end{array} \right.\).              
C. \(\left\{ \begin{array}{l}x = - 1 + t\\y = 1 - t\\z = 0\end{array} \right.\).                          
D. \(\left\{ \begin{array}{l}x = t\\y = 1 - t\\z = 0\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP