Trong không gian với hệ trục tọa độ Oxyz, có hai trục \(Ox,\;Oy\) đặt trên mặt đất (coi mặt đất là một mặt phẳng); tia \(Oz\) hướng lên phía trên; đơn vị trên các trục tính bằng mét. Một thiết bị phát sóng \(M\)đặt tại điểm \(A\left( {80;60;60} \right)\). Vùng phủ sóng của thiết bị \(M\) có bán kính \(500\) mét. Gọi \(d\) là đường thẳng đi qua điểm \(B\left( {0; - 490;0} \right)\) và song song với trục \(Ox.\)

a) Một thiết bị thu sóng \(N\)(coi như một điểm) di chuyển trên trục \(Oy\)từ vị trí \(B\) theo hướng của vectơ \(\overrightarrow {BO} \). Thiết bị thu sóng \(N\)phải di chuyển một đoạn đường ngắn nhất bằng \[60,3\]mét thì vào được vùng phủ sóng của thiết bị \[M\].
b) Điểm \[B\] không thuộc vùng phủ sóng của thiết bị \[M\].
c) Một thiết bị thu sóng \(N\)(coi như một điểm) di chuyển trên đường thẳng \(d\) thì có thể vào được vùng phủ sóng của thiết bị \[M\].
d) Phương trình tham số của đường thẳng \(d\) là \[\left\{ \begin{array}{l}x = 0\\y = - 490\\z = t\end{array} \right.\left( {t \in \mathbb{R}} \right)\].
Trong không gian với hệ trục tọa độ Oxyz, có hai trục \(Ox,\;Oy\) đặt trên mặt đất (coi mặt đất là một mặt phẳng); tia \(Oz\) hướng lên phía trên; đơn vị trên các trục tính bằng mét. Một thiết bị phát sóng \(M\)đặt tại điểm \(A\left( {80;60;60} \right)\). Vùng phủ sóng của thiết bị \(M\) có bán kính \(500\) mét. Gọi \(d\) là đường thẳng đi qua điểm \(B\left( {0; - 490;0} \right)\) và song song với trục \(Ox.\)

a) Một thiết bị thu sóng \(N\)(coi như một điểm) di chuyển trên trục \(Oy\)từ vị trí \(B\) theo hướng của vectơ \(\overrightarrow {BO} \). Thiết bị thu sóng \(N\)phải di chuyển một đoạn đường ngắn nhất bằng \[60,3\]mét thì vào được vùng phủ sóng của thiết bị \[M\].
b) Điểm \[B\] không thuộc vùng phủ sóng của thiết bị \[M\].
c) Một thiết bị thu sóng \(N\)(coi như một điểm) di chuyển trên đường thẳng \(d\) thì có thể vào được vùng phủ sóng của thiết bị \[M\].
d) Phương trình tham số của đường thẳng \(d\) là \[\left\{ \begin{array}{l}x = 0\\y = - 490\\z = t\end{array} \right.\left( {t \in \mathbb{R}} \right)\].
Quảng cáo
Trả lời:
a) Sai. Phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phát sóng của thiết bị phát sóng \(M\) trong không gian là mặt cầu \(\left( S \right)\) có tâm \(A\left( {80;60;60} \right)\), bán kính \(500\) có phương trình\({\left( {x - 80} \right)^2} + {\left( {y - 60} \right)^2} + {\left( {z - 60} \right)^2} = {500^2}\).
Gọi \[E\left( {0;t;0} \right)\] là giao điểm của \(Oy\) và \(\left( S \right)\). Khi đó
\[{\left( { - 80} \right)^2} + {\left( {t - 60} \right)^2} + {60^2} = {500^2} \Leftrightarrow {\left( {t - 60} \right)^2} = 240000 \Leftrightarrow \left[ \begin{array}{l}{t_1} = 60 + 200\sqrt 6 \\{t_2} = 60 - 200\sqrt 6 \end{array} \right.\].
Ta có:
\[{t_1} = 60 + 200\sqrt 6 \Rightarrow {E_1}\left( {0;60 + 200\sqrt 6 ;0} \right) \Rightarrow {E_1}B = 550 + 200\sqrt 6 > 60,3\].
\[{t_2} = 60 - 200\sqrt 6 \Rightarrow {E_2}\left( {0;60 - 200\sqrt 6 ;0} \right) \Rightarrow {E_2}B = 550 - 200\sqrt 6 \approx 60,1\].
Thiết bị thu sóng \(N\)phải di chuyển một đoạn đường ngắn nhất bằng \[60,1\]mét thì vào được vùng phủ sóng của thiết bị \[M\].
b) Đúng. Ta có: \(\overrightarrow {AB} = \left( { - 80\,;\,550\,;\, - 60} \right) \Rightarrow AB = \sqrt {{{\left( { - 80} \right)}^2} + {{550}^2} + {{\left( { - 60} \right)}^2}} > 500 = R\).
Vậy điểm \[B\] nằm ngoài mặt cầu \(\left( S \right)\) nên điểm \[B\] không thuộc vùng phủ sóng của thiết bị \[M\].
c) Sai. Đường thẳng \[d\] đi qua điểm \(B\left( {0; - 490;0} \right)\) và song song với trục \(Ox\) có VTCP \[\overrightarrow i = \left( {1;0;0} \right)\] có PTTS là \[\left\{ \begin{array}{l}x = t\\y = - 490\\z = 0\end{array} \right.\left( {t \in \mathbb{R}} \right)\].
Suy ra: \(\left[ {\overrightarrow i ,\overrightarrow {AB} } \right] = \left( {0\,;\,60\,;\, - 550} \right)\).
Khoảng cách ngắn nhất từ \(A\left( {80;60;60} \right)\) đường thẳng \(d\) là:
\(d\left( {A;d} \right) = \frac{{\left| {\left[ {\overrightarrow i ,\overrightarrow {AB} } \right]} \right|}}{{\left| {\overrightarrow i } \right|}} = \frac{{\sqrt {{0^2} + {{60}^2} + {{\left( { - 550} \right)}^2}} }}{{\sqrt {{1^2} + {0^2} + {0^2}} }} > 500 = R\).
Vì vậy thiết bị thu sóng \(N\)(coi như một điểm) di chuyển trên đường thẳng \(d\) thì không thể vào được vùng phủ sóng của thiết bị \[M\].
d) Sai. Đường thẳng \[d\] đi qua điểm \(B\left( {0; - 490;0} \right)\) và song song với trục \(Ox\) có VTCP \[\overrightarrow i = \left( {1;0;0} \right)\] có PTTS là \[\left\{ \begin{array}{l}x = t\\y = - 490\\z = 0\end{array} \right.\left( {t \in \mathbb{R}} \right)\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).
Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).
Áp dụng bất đẳng thức Minkowski ta có:
\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)
\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).
Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)
Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y > - 12\).
Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)} = \sqrt {2.36} = 6\sqrt 2 \).
Đặt \(t = x + y \Rightarrow - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}} = \sqrt {2{t^2} - 104t + {{52}^2}} \).
\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).
Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}} = \sqrt {2776 - 624\sqrt 2 } \approx 44\).
Đáp án: 44.
Lời giải
Gọi \(A,B\) là giao điểm của mp \(\left( Q \right)\) với trục \(Ox\) và \(Oy\), \(H\) là hình chiếu vuông góc của \(O\) lên \(AB\).

Vì khoảng cách giữa hai mặt phẳng bằng \(30\)m nên \(OH = 30\).
Theo giả thiết ta có góc \(\widehat {OAH} = 38^\circ \) nên khi đó \(OA = \frac{{OH}}{{\sin 38^\circ }} = \frac{{30}}{{\sin 38^\circ }}\).
\({x_H} = - OH.\cos 52^\circ = - 30.\cos 52^\circ \), \({y_H} = - OH\cos 38^\circ = - 30\cos 38^\circ \).
Tọa độ điểm \(A\left( { - \frac{{30}}{{\sin 38^\circ }};\,0\,;\,0} \right)\), \(H\left( { - 30\cos 52^\circ ;\, - 30\cos 38^\circ ;0} \right)\) và chọn một vectơ pháp tuyến là \(\overrightarrow n = \left( {1;\,\frac{{\cos 38^\circ }}{{\cos 52^\circ }}\,;\,0} \right)\).
Mặt phẳng \(\left( Q \right)\) đi qua \(A\) vuông góc \(OH\) nhận \(\overrightarrow n \) làm véc tơ pháp tuyến có phương trình:
\(\left( {x + \frac{{30}}{{\sin 38^\circ }}} \right) + \frac{{\cos 38^\circ }}{{\cos 52^\circ }}y = 0 \Leftrightarrow x + \frac{{\cos 38^\circ }}{{\cos 52^\circ }}y + \frac{{30}}{{\sin 38^\circ }} = 0\).
Vậy \(m + n = 68\).
Đáp án: 68.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


