Câu hỏi:

07/10/2025 7 Lưu

Bác An dự định làm bốn mái nhà của một ngôi nhà sao cho chúng là bốn mặt bên của một hình chóp tứ giác đều và các mái kề nhau thì vuông góc với nhau. Hỏi ý tưởng đó có làm được không?

Bác An dự định làm bốn mái nhà của một ngôi nhà sao cho chúng là bốn mặt bên của một hình chóp tứ giác đều và các mái kề nhau thì vuông góc với nhau. Hỏi ý tưởng đó có làm được không?   (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Bác An dự định làm bốn mái nhà của một ngôi nhà sao cho chúng là bốn mặt bên của một hình chóp tứ giác đều và các mái kề nhau thì vuông góc với nhau. Hỏi ý tưởng đó có làm được không?   (ảnh 2)

Giả sử mái nhà của ngôi nhà được minh họa như hình vẽ trên. Ta gắn hệ trục tọa độ như hình vẽ.

Gọi các cạnh đáy của hình chóp có độ dài là \(a\) và các cạnh bên có độ dài là \(b\).

Vì \(ABCD\) là hình vuông cạnh \(a\) nên \(OA = OB = OC = OD = a\sqrt 2 \).

Vì \(SO\) là đường cao của tam giác \(SOC\)nên \(SO = \sqrt {S{C^2} - O{C^2}}  = \sqrt {{b^2} - \frac{{{a^2}}}{2}}  = \sqrt {\frac{{2{b^2} - {a^2}}}{2}} \).

Khi đó ta có: \(O\left( {0;0;0} \right);\,A\left( {\frac{{ - a\sqrt 2 }}{2};0;0} \right),C\left( {\frac{{a\sqrt 2 }}{2};0;0} \right),B\left( {0;\frac{{ - a\sqrt 2 }}{2};0} \right);D\left( {0;\frac{{a\sqrt 2 }}{2};0} \right)\) và \(S\left( {0;0;\sqrt {\frac{{2{b^2} - {a^2}}}{2}} } \right)\).

Ta có: \(\overrightarrow {SC}  = \left( {\frac{{a\sqrt 2 }}{2};0; - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} } \right);\,\overrightarrow {DC}  = \left( {\frac{{a\sqrt 2 }}{2}; - \frac{{a\sqrt 2 }}{2};0} \right)\); \(\,\overrightarrow {BC}  = \left( {\frac{{a\sqrt 2 }}{2};\frac{{a\sqrt 2 }}{2};0} \right)\).

Mặt khác: \(\overrightarrow {{n_1}}  = \left[ {\overrightarrow {SC} ;\frac{{\sqrt 2 }}{a}\overrightarrow {DC} } \right] = \left( {\sqrt {\frac{{2{b^2} - {a^2}}}{2}} ;\sqrt {\frac{{2{b^2} - {a^2}}}{2}} ; - \frac{{a\sqrt 2 }}{2}} \right)\);

\(\overrightarrow {{n_2}}  = \left[ {\overrightarrow {SC} ;\frac{{\sqrt 2 }}{a}\overrightarrow {BC} } \right] = \left( {\sqrt {\frac{{2{b^2} - {a^2}}}{2}} ; - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} ;\frac{{a\sqrt 2 }}{2}} \right)\).

Mặt phẳng \(\left( {SCD} \right)\) nhận \(\overrightarrow {{n_1}} \) làm một vectơ pháp tuyến.

Mặt phẳng \(\left( {SBC} \right)\) nhận \(\overrightarrow {{n_2}} \) làm một vectơ pháp tuyến.

Vì \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = \frac{{ - {a^2}}}{2} \ne 0\) do đó hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {SBC} \right)\) không vuông góc với nhau.

Do đó ý tưởng trên không thực hiện được.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Phương trình mặt cầu \[\left( S \right)\] tâm \[I\left( {1;\,3;\,7} \right)\] bán kính 3 km mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là \[{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 7} \right)^2} = 9\].

b) Đúng. Ta có: \[IA = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {2 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}}  = \sqrt 2  < 3\] nên điểm \[A\] nằm trong mặt cầu. Vì điểm \[A\] nằm trong mặt cầu nên người dùng điện thoại ở vị trí có toạ độ \[A\left( {2;\,2;\,7} \right)\] có thể sử dụng dịch vụ của trạm thu phát sóng đó.

c) Đúng. Ta có: \[IB = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {6 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}}  = 5 > 3\] nên điểm \[B\] nằm ngoài mặt cầu. Vậy người dùng điện thoại ở vị trí có toạ độ \[B\left( {5;\,6;\,7} \right)\] không thể sử dụng dịch vụ của trạm thu phát sóng đó.

d) Đúng. Ta có: \[\overrightarrow {IB} \left( {4;\,3;\,0} \right);\] \[IB = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {6 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}}  = 5 > 3\] nên điểm \[B\] nằm ngoài mặt cầu. Phương trình đường thẳng \[BI\] dạng: \[\left\{ \begin{array}{l}x = 1 + 4t\\y = 3 + 3t\\z = 7\end{array} \right.\].

Gọi mặt cầu \[\left( S \right) \cap BI \equiv E\] suy ra tọa độ \[E\] là nghiệm của hệ

\[\left\{ \begin{array}{l}x = 1 + 4t\\y = 3 + 3t\\z = 7\\{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 7} \right)^2} = 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}t = \frac{3}{5}\\x = \frac{{17}}{5}\\y = \frac{{24}}{5}\\z = 7\end{array} \right. \Rightarrow E\left( {\frac{{17}}{5};\,\frac{{24}}{5};7} \right) \Rightarrow EB \approx 1,7\\\left\{ \begin{array}{l}t =  - \frac{3}{5}\\x =  - \frac{7}{5}\\y = \frac{6}{5}\\z = 7\end{array} \right. \Rightarrow E\left( { - \frac{7}{5};\,\frac{6}{5};7} \right) \Rightarrow EB = 8\end{array} \right.\]

Vậy khoảng cách lớn nhất để một người ở vị trí có toạ độ \[B\left( {5;\,6;\,7} \right)\] di chuyển được tới vùng phủ sóng theo đơn vị kilômét là \[8\,\]km.

Lời giải

Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).

Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).

Áp dụng bất đẳng thức Minkowski ta có:

\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)

\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).

Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)

Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y >  - 12\).

Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)}  = \sqrt {2.36}  = 6\sqrt 2 \).

Đặt \(t = x + y \Rightarrow  - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}}  = \sqrt {2{t^2} - 104t + {{52}^2}} \).

\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).

Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}}  = \sqrt {2776 - 624\sqrt 2 }  \approx 44\).

Đáp án: 44.