Câu hỏi:

07/10/2025 124 Lưu

Bác An dự định làm bốn mái nhà của một ngôi nhà sao cho chúng là bốn mặt bên của một hình chóp tứ giác đều và các mái kề nhau thì vuông góc với nhau. Hỏi ý tưởng đó có làm được không?

Bác An dự định làm bốn mái nhà của một ngôi nhà sao cho chúng là bốn mặt bên của một hình chóp tứ giác đều và các mái kề nhau thì vuông góc với nhau. Hỏi ý tưởng đó có làm được không?   (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Bác An dự định làm bốn mái nhà của một ngôi nhà sao cho chúng là bốn mặt bên của một hình chóp tứ giác đều và các mái kề nhau thì vuông góc với nhau. Hỏi ý tưởng đó có làm được không?   (ảnh 2)

Giả sử mái nhà của ngôi nhà được minh họa như hình vẽ trên. Ta gắn hệ trục tọa độ như hình vẽ.

Gọi các cạnh đáy của hình chóp có độ dài là \(a\) và các cạnh bên có độ dài là \(b\).

Vì \(ABCD\) là hình vuông cạnh \(a\) nên \(OA = OB = OC = OD = a\sqrt 2 \).

Vì \(SO\) là đường cao của tam giác \(SOC\)nên \(SO = \sqrt {S{C^2} - O{C^2}}  = \sqrt {{b^2} - \frac{{{a^2}}}{2}}  = \sqrt {\frac{{2{b^2} - {a^2}}}{2}} \).

Khi đó ta có: \(O\left( {0;0;0} \right);\,A\left( {\frac{{ - a\sqrt 2 }}{2};0;0} \right),C\left( {\frac{{a\sqrt 2 }}{2};0;0} \right),B\left( {0;\frac{{ - a\sqrt 2 }}{2};0} \right);D\left( {0;\frac{{a\sqrt 2 }}{2};0} \right)\) và \(S\left( {0;0;\sqrt {\frac{{2{b^2} - {a^2}}}{2}} } \right)\).

Ta có: \(\overrightarrow {SC}  = \left( {\frac{{a\sqrt 2 }}{2};0; - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} } \right);\,\overrightarrow {DC}  = \left( {\frac{{a\sqrt 2 }}{2}; - \frac{{a\sqrt 2 }}{2};0} \right)\); \(\,\overrightarrow {BC}  = \left( {\frac{{a\sqrt 2 }}{2};\frac{{a\sqrt 2 }}{2};0} \right)\).

Mặt khác: \(\overrightarrow {{n_1}}  = \left[ {\overrightarrow {SC} ;\frac{{\sqrt 2 }}{a}\overrightarrow {DC} } \right] = \left( {\sqrt {\frac{{2{b^2} - {a^2}}}{2}} ;\sqrt {\frac{{2{b^2} - {a^2}}}{2}} ; - \frac{{a\sqrt 2 }}{2}} \right)\);

\(\overrightarrow {{n_2}}  = \left[ {\overrightarrow {SC} ;\frac{{\sqrt 2 }}{a}\overrightarrow {BC} } \right] = \left( {\sqrt {\frac{{2{b^2} - {a^2}}}{2}} ; - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} ;\frac{{a\sqrt 2 }}{2}} \right)\).

Mặt phẳng \(\left( {SCD} \right)\) nhận \(\overrightarrow {{n_1}} \) làm một vectơ pháp tuyến.

Mặt phẳng \(\left( {SBC} \right)\) nhận \(\overrightarrow {{n_2}} \) làm một vectơ pháp tuyến.

Vì \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = \frac{{ - {a^2}}}{2} \ne 0\) do đó hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {SBC} \right)\) không vuông góc với nhau.

Do đó ý tưởng trên không thực hiện được.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).

Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).

Áp dụng bất đẳng thức Minkowski ta có:

\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}}  + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)

\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).

Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)

Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y >  - 12\).

Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)}  = \sqrt {2.36}  = 6\sqrt 2 \).

Đặt \(t = x + y \Rightarrow  - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}}  = \sqrt {2{t^2} - 104t + {{52}^2}} \).

\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).

Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}}  = \sqrt {2776 - 624\sqrt 2 }  \approx 44\).

Đáp án: 44.

Lời giải

Gọi \(A,B\) là giao điểm của mp \(\left( Q \right)\) với trục \(Ox\) và \(Oy\), \(H\) là hình chiếu vuông góc của \(O\) lên \(AB\).

Manhattanhenge (Hình 1) là một sự kiện diễn ra khi Mặt Trời mọc hoặc khi Mặt Trời lặn nằm thẳng hàng với các tuyến phố Đông - Tây thuộc mạng lưới đường phố chính tại quận Manhattan của thành phố New York. (ảnh 3)

Vì khoảng cách giữa hai mặt phẳng bằng \(30\)m nên \(OH = 30\).

Theo giả thiết ta có góc \(\widehat {OAH} = 38^\circ \) nên khi đó \(OA = \frac{{OH}}{{\sin 38^\circ }} = \frac{{30}}{{\sin 38^\circ }}\).

\({x_H} =  - OH.\cos 52^\circ  =  - 30.\cos 52^\circ \), \({y_H} =  - OH\cos 38^\circ  =  - 30\cos 38^\circ \).

Tọa độ điểm \(A\left( { - \frac{{30}}{{\sin 38^\circ }};\,0\,;\,0} \right)\), \(H\left( { - 30\cos 52^\circ ;\, - 30\cos 38^\circ ;0} \right)\) và chọn một vectơ pháp tuyến là \(\overrightarrow n  = \left( {1;\,\frac{{\cos 38^\circ }}{{\cos 52^\circ }}\,;\,0} \right)\).

Mặt phẳng \(\left( Q \right)\) đi qua \(A\) vuông góc \(OH\) nhận \(\overrightarrow n \) làm véc tơ pháp tuyến có phương trình:

\(\left( {x + \frac{{30}}{{\sin 38^\circ }}} \right) + \frac{{\cos 38^\circ }}{{\cos 52^\circ }}y = 0 \Leftrightarrow x + \frac{{\cos 38^\circ }}{{\cos 52^\circ }}y + \frac{{30}}{{\sin 38^\circ }} = 0\).

Vậy \(m + n = 68\).

Đáp án: 68.

Câu 6

A. \(z + 2 = 0\).               
B. \(z - 2 = 0\).              
C. \(2x - 3y = 0\).                                   
D. \(2x - 3y - 2 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 1 - t\\z = 0\end{array} \right.\).   
B. \(\left\{ \begin{array}{l}x = - 1 + t\\y = 1 - 2t\\z = 0\end{array} \right.\).              
C. \(\left\{ \begin{array}{l}x = - 1 + t\\y = 1 - t\\z = 0\end{array} \right.\).                          
D. \(\left\{ \begin{array}{l}x = t\\y = 1 - t\\z = 0\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP